| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910821331603321 |
|
|
Titolo |
Ergodic theory : Probability and Ergodic Theory Workshops, February 15-18, 2007, February 14-17, 2008, University of North Carolina, Chapel Hill / / Idris Assani, editor |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2009] |
|
©2009 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-8218-8164-7 |
0-8218-4649-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (171 p.) |
|
|
|
|
|
|
Collana |
|
Contemporary mathematics, ; 485 , 0271-4132 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents -- Preface -- Injectivity of the Dubins-Freedman construction of random distributions -- A maximal inequality for the tail of the bilinear Hardy-Littlewood function -- Almost sure convergence of weighted sums of independent random variables -- Recurrence, ergodicity and invariant measures for cocycles over a rotation -- 1. Invariant measures, regularity of a cocycle -- 2. Growth of the ergodic sums over a rotation, application to recurrence -- 3. Examples of ergodic BV Rd-cocycles -- 4. Examples of non-regular cocycles -- 5. Appendix : A Diophantine property for (α, β) -- References -- Examples of recurrent or transient stationary walks in Rd over a rotation of T2 -- 1. A sufficient condition of recurrence for stationary walks -- 2. Series with small denominators -- 3. Growth in norm ll ll2 of the ergodic sums and recurrence -- 4. An example of transient cocycle -- References -- A short proof of the unique ergodicity of horicyclic flows -- A-periodic order via dynamical systems: Diffraction for sets of finite local complexity -- Laws of iterated logarithm for weighted sums of iid random variables -- Homeomorphic Bernoulli trial measures and ergodic theory -- Distinguishing transformations by averaging methods -- Some open problems. |
|
|
|
|
|
|
|
| |