1.

Record Nr.

UNINA9910821063403321

Autore

Matthiopoulos Jason

Titolo

How to be a quantitative ecologist : the 'A to R' of green mathematics and statistics / / Jason Matthiopoulos

Pubbl/distr/stampa

Chichester, West Sussex, U.K., : Wiley, 2011

ISBN

1-283-40535-0

9786613405357

1-119-99172-2

1-119-99158-7

1-119-99159-5

Edizione

[1st ed.]

Descrizione fisica

1 online resource (491 pages)

Disciplina

577.0285/5133

Soggetti

Ecology - Mathematics

Ecology - Research

Ecology - Vocational guidance

Mathematics - Vocational guidance

Quantitative analysts

Quantitative research

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Intro -- How to be a Quantitative Ecologist -- The A to Rof green mathematics &amp -- statistics -- How I chose to write this book, and why you might choose to read it Preface -- 0. How to start a meaningful relationship with your computer Introduction to R -- 0.1 What is R? -- 0.2 Why use R for this book? -- 0.3 Computing with a scientific package like R -- 0.4 Installing and interacting with R -- 0.5 Style conventions -- 0.6 Valuable R accessories -- 0.7 Getting help -- 0.8 Basic R usage -- 0.9 Importing data from a spreadsheet -- 0.10 Storing data in data frames -- 0.11 Exporting data from R -- 0.12 Quitting R -- Further reading -- References -- 1. How to make mathematical statements Numbers, equations and functions -- 1.1 Qualitative and quantitative scales --  Habitat classifications -- 1.2 Numbers --  Observations of spatial abundance -- 1.3 Symbols --  



Population size and carrying capacity -- 1.4 Logical operations -- 1.5 Algebraic operations --  Size matters in male garter snakes -- 1.6 Manipulating numbers -- 1.7 Manipulating units -- 1.8 Manipulating expressions --  Energy acquisition in voles -- 1.9 Polynomials --  The law of mass action in epidemiology -- 1.10 Equations -- 1.11 First order polynomial equations --  Population size and composition -- 1.12 Proportionality and scaling: a special kind of first order polynomial equation --  Simple mark-recapture --  Converting density to population size -- 1.13 Second and higher order polynomial equations --  Estimating the number of infected animals from the rate of infection -- 1.14 Systems of polynomial equations --  Deriving population structure from data on population size -- 1.15 Inequalities --  Minimum energetic requirements in voles -- 1.16 Coordinate systems --  Non-Cartesian map projections -- 1.17 Complex numbers -- 1.18 Relations and functions --  Food webs.

Mating systems in animals -- 1.19 The graph of a function --  Two aspects of vole energetics -- 1.20 First order polynomial functions --  Population stability in a time series --  Population stability and population change --  Visualising goodness-of-fit -- 1.21 Higher order polynomial functions -- 1.22 The relationship between equations and functions --  Extent of an epidemic when the transmission rate exceeds a critical value -- 1.23. Other useful functions -- 1.24 Inverse functions -- 1.25 Functions of more than one variable --  Two aspects of vole energetics -- Further reading -- References -- 2. How to describe regular shapes and patterns Geometry and trigonometry -- 2.1 Primitive elements -- 2.2 Axioms of Euclidean geometry --  Suicidal lemmings, parsimony, evidence and proof -- 2.3 Propositions --  Radio-tracking of terrestrial animals -- 2.4 Distance between two points --  Spatial autocorrelation in ecological variables -- 2.5 Areas and volumes --  Hexagonal territories -- 2.6 Measuring angles --  The bearing of a moving animal -- 2.7 The trigonometric circle --  The position of a seed following dispersal -- 2.8 Trigonometric functions -- 2.9 Polar coordinates --  Random walks -- 2.10 Graphs of trigonometric functions -- 2.11 Trigonometric identities --  A two-step random walk -- 2.12 Inverses of trigonometric functions --  Displacement during a random walk -- 2.13 Trigonometric equations --  VHF tracking for terrestrial animals -- 2.14 Modifying the basic trigonometric graphs --  Nocturnal flowering in dry climates -- 2.15 Superimposing trigonometric functions --  More realistic model of nocturnal flowering -- 2.16 Spectral analysis --  Dominant frequencies in density fluctuations of Norwegian lemming populations --  Spectral analysis of oceanographic covariates -- 2.17 Fractal geometry.

Availability of coastal habitat --  Fractal dimension of the Koch curve -- Further reading -- References -- 3. How to change things, one step at a time Sequences, difference equations and logarithms -- 3.1 Sequences --  Reproductive output in social wasps --  Unrestricted population growth -- 3.2 Difference equations --  More realistic models of population growth -- 3.3 Higher order difference equations --  Delay-difference equations in a biennial plant -- 3.4 Initial conditions and parameters -- 3.5 Solutions of a difference equation -- 3.6 Equilibrium solutions --  Harvesting an unconstrained population --  Visualising the equilibria -- 3.7 Stable and unstable equilibria --  Parameter sensitivity and ineffective fishing quotas --  Stable and unstable equilibria in a density-dependent population -- 3.8 Investigating stability --  Cobweb plot for an unconstrained, harvested population --  Conditions for stability under unrestricted growth -- 3.9 Chaos --  Chaos in a model with density dependence -- 3.10 Exponential function --  Modelling bacterial loads in continuous time



--  A negative blue tit? Using exponential functions to constrain models -- 3.11 Logarithmic function --  Log-transforming population time series -- 3.12 Logarithmic equations -- Further reading -- References -- 4. How to change things, continuously Derivatives and their applications -- 4.1 Average rate of change --  Seasonal tree growth --  Tree growth -- 4.2 Instantaneous rate of change -- 4.3 Limits --  Methane concentration around termite mounds -- 4.4 The derivative of a function --  Plotting change in tree biomass --  Linear tree growth -- 4.5 Differentiating polynomials --  Spatial gradients -- 4.6 Differentiating other functions --  Consumption rates of specialist predators -- 4.7 The chain rule.

Diurnal rate of change in the attendance of insect pollinators -- 4.8 Higher order derivatives --  Spatial gradients -- 4.9 Derivatives of functions of many variables --  The slope of the sea-floor -- 4.10 Optimisation --  Maximum rate of disease transmission --  The marginal value theorem -- 4.11 Local stability for difference equations --  Unconstrained population growth --  Density dependence and proportional harvesting -- 4.12 Series expansions -- Further reading -- References -- 5. How to work with accumulated change Integrals and their applications -- 5.1 Antiderivatives --  Invasion fronts --  Diving in seals -- 5.2 Indefinite integrals --  Allometry -- 5.3 Three analytical methods of integration --  Stopping invasion fronts -- 5.4 Summation --  Metapopulations -- 5.5 Area under a curve --  Swimming speed in seals -- 5.6 Definite integrals --  Swimming speed in seals -- 5.7 Some properties of definite integrals --  Total reproductive output in social wasps --  Net change in number of birds at migratory stop-over --  Total number of arrivals and departures at migratory stop-over -- 5.8 Improper integrals --  Failing to stop invasion fronts -- 5.9 Differential equations --  A differential equation for a plant invasion front -- 5.10 Solving differential equations --  Exponential population growth in continuous time --  Constrained growth in continuous time -- 5.11 Stability analysis for differential equations --  Constrained growth in continuous time --  The Levins model for metapopulations -- Further reading -- References -- 6. How to keep stuff organised in tables Matrices and their applications -- 6.1 Matrices --  Plant community composition --  Inferring diet from fatty acid analysis -- 6.2 Matrix operations --  Movement in metapopulations -- 6.3 Geometric interpretation of vectors and square matrices.

Random walks as sequences of vectors -- 6.4 Solving systems of equations with matrices --  Plant community composition -- 6.5 Markov chains --  Redistribution between population patches -- 6.6 Eigenvalues and eigenvectors --  Growth in patchy populations --  Metapopulation growth -- 6.7 Leslie matrix models --  Stage-structured seal populations --  Equilibrium of linear Leslie model --  Stability in a linear Leslie model --  Stable age structure in a linear Leslie model -- 6.8 Analysis of linear dynamical systems --  A fragmented population in continuous time --  Phase-space for a two-patch metapopulation --  Stability analysis of a two-patch metapopulation -- 6.9 Analysis of nonlinear dynamical systems --  The Lotka-Volterra, predator-prey model --  Stability analysis of the Lotka-Volerra model -- Further reading -- References -- 7 How to visualise and summarise data Descriptive statistics -- 7.1 Overview of statistics -- 7.2 Statistical variables --  Activity budgets in honey bees -- 7.3 Populations and samples --  Production of gannet chicks -- 7.4 Single-variable samples -- 7.5 Frequency distributions --  Activity budgets in honey bees --  Activity budgets from different studies --  Visualising activity budgets --  Height of tree ferns --  Gannets on Bass rock --



7.6 Measures of centrality --  Chick rearing in red grouse --  Swimming speed in grey seals --  Median of chicks reared by red grouse -- 7.7 Measures of spread --  Gannet foraging -- 7.8 Skewness and kurtosis -- 7.9 Graphical summaries -- 7.10 Data sets with more than one variable -- 7.11 Association between qualitative variables --  Community recovery in abandoned fields -- 7.12 Association between quantitative variables --  Height and root depth of tree ferns -- 7.13 Joint frequency distributions --  Mosaics of abandoned fields.

Joint distribution of tree height and root depth.