1.

Record Nr.

UNINA9910820780703321

Titolo

Co-design approaches to dependable networked control systems / / edited by Christophe Aubrun, Daniel Simon, Ye-Qiong Song

Pubbl/distr/stampa

London, : ISTE

Hoboken, N.J., : Wiley, 2010

ISBN

1-118-62066-6

1-118-55767-0

1-299-31554-2

1-118-62070-4

Edizione

[1st edition]

Descrizione fisica

1 online resource (330 p.)

Collana

ISTE

Altri autori (Persone)

AubrunChristophe

SimonDaniel <1954->

SongYe-Qiong

Disciplina

629.8/3

Soggetti

Feedback control systems - Reliability

Feedback control systems - Design and construction

Sensor networks - Reliability

Sensor networks - Design and construction

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Title Page; Copyright Page; Table of Contents; Foreword; Introduction and Problem Statement; I.1. Networked control systems and control design challenges; I.2. Control design: from continuous time to networked implementation; I.3. Timing parameter assignment; I.4. Control and task/message scheduling; I.5. Diagnosis and fault tolerance in NCS; I.6. Co-design approaches; I.7. Outline of the book; I.8. Bibliography; Chapter 1. Preliminary Notions and State of the Art; 1.1.Overview; 1.2. Preliminary notions on real-time scheduling; 1.2.1. Some basic results on classic task model scheduling

1.2.1.1. Fixed priority scheduling1.2.1.2. EDF scheduling; 1.2.1.3. Discussion; 1.2.2. (m,k)-firm model; 1.3. Control aware computing; 1.3.1. Off-line approaches; 1.3.2. Quality of Service and flexible scheduling; 1.4. Feedback-scheduling basics; 1.4.1. Control of the computing resource; 1.4.1.1.Control structure; 1.4.1.2. Sensors and



actuators; 1.4.1.3.Control design and implementation; 1.4.2.Examples; 1.4.2.1. Feedback scheduling a web server; 1.4.2.2. Optimal control-based feedback scheduling; 1.4.2.3. Feasibility: feedback-scheduler implementation for robot control

1.5. Fault diagnosis of NCS with network-induced effects1.5.1. Fault diagnosis of NCS with network-induced time delays; 1.5.1.1. Low-pass post-filtering; 1.5.1.2. Structure matrix of network-induced time delay; 1.5.1.3. Robust deadbeat fault filter; 1.5.1.4. Other work; 1.5.2. Fault diagnosis of NCS with packet losses; 1.5.2.1. Deterministic packet losses; 1.5.2.2. Stochastic packet losses; 1.5.3. Fault diagnosis of NCS with limited communication; 1.5.4. Fault-tolerant control of NCS; 1.6. Summary; 1.7. Bibliography; Chapter 2. Computing-aware Control; 2.1. Overview

2.2. Robust control w.r.t. computing and networking-induced latencies2.2.1. Introduction; 2.2.2. What happens when delays appear?; 2.2.2.1. Initial conditions; 2.2.2.2. Infinite dimensional systems; 2.2.3. Delay models; 2.2.4. Stability analysis of TDS using Lyapunov theory; 2.2.4.1. The second method; 2.2.4.2. The Lyapunov-Razumikhin approach; 2.2.4.3. The Lyapunov-Krasovskii approach; 2.2.5. Summary: time-delay systems and networking; 2.3. Weakly hard constraints; 2.3.1. Problem definition; 2.3.2. Notion of accelerable control; 2.3.3. Design of accelerable controllers

3.2.1. Context of the study

Sommario/riassunto

This book describes co-design approaches, and establishes the links between the QoC (Quality of Control) and QoS (Quality of Service) of the network and computing resources. The methods and tools described in this book take into account, at design level, various parameters and properties that must be satisfied by systems controlled through a network. Among the important network properties examined are the QoC, the dependability of the system, and the feasibility of the real-time scheduling of tasks and messages. Correct exploitation of these approaches allows for efficient design, diagnosis, a