|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910819709403321 |
|
|
Autore |
Wu Shen R. <1945-> |
|
|
Titolo |
Introduction to the explicit finite element method for nonlinear transient dynamics / / Shen R. Wu and Lei Gu |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : Wiley, 2012 |
|
|
|
|
|
|
|
ISBN |
|
1-282-24187-7 |
9786613812995 |
1-118-38201-3 |
1-118-38207-2 |
1-118-38209-9 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (353 p.) |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Finite element method |
Numerical analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Machine generated contents note: PART 1 Fundamentals1 Introduction1.1 Era of Simulation and Computer Aided Engineering1.2 Preliminaries2 Framework of Explicit Finite Element Method for Nonlinear Transient Dynamics2.1 Transient Structural Dynamics2.2 Variational Principles for Transient Dynamics2.3 Finite Element Equations and the Explicit Procedures2.4 Main Features of the Explicit Finite Element Method2.5 Assessment of Explicit Finite Element MethodPART 2 Element Technology3 Four-Node Shell Element (Reissner-Mindlin Plate Theory)3.1 Fundamentals of Plates and Shells3.2 Linear Theory of R-M Plate3.3 Interpolation for Four-Node R-M Plate Element3.4 Reduced Integration and Selective Reduced Integration3.5 Perturbation Hourglass Control - Belytschko-Tsay (B-T) Element3.6 Physical Hourglass Control - Belytschko-Leviathan (B-L) (QPH) Element3.7 Shear Projection Method - Bathe-Dvorkin (B-D) Element3.8 Assessment of Four-Node R-M Plate Element4 Three-Node Shell Element (Reissner-Mindlin Plate Theory)4.1 Fundamentals of a Three-Node C0 Element4.2 Decomposition Method for C0 Triangular Element with One Point Integration4.3 Discrete Kirchhoff Triangular (DKT) |
|
|
|
|