1.

Record Nr.

UNINA9910819512503321

Autore

Kramer Andrei

Titolo

Stochastic methods for parameter estimation and design of experiments in systems biology / / vorgelegt von Andrei Kramer

Pubbl/distr/stampa

Berlin, Germany : , : Logos Verlag, , [2016]

©2016

ISBN

3-8325-8795-0

Descrizione fisica

1 online resource (xii,137 pages) : illustrations

Disciplina

570.113

Soggetti

Stochastic analysis - Mathematical models

Systems biology - Statistical mehods

Biological systems - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Von der Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor- Ingenieurs (Dr.-Ing.) genehmigte Abhandlung."

Nota di bibliografia

Includes bibliographical references (pages 127-137).

Sommario/riassunto

Long description: Markov Chain Monte Carlo (MCMC) methods are sampling based techniques, which use random numbers to approximate deterministic but unknown values. They can be used to obtain expected values, estimate parameters or to simply inspect the properties of a non-standard, high dimensional probability distribution. Bayesian analysis of model parameters provides the mathematical foundation for parameter estimation using such probabilistic sampling.  The strengths of these stochastic methods are their robustness and relative simplicity even for nonlinear problems with dozens of parameters as well as a built-in uncertainty analysis. Because Bayesian model analysis necessarily involves the notion of prior knowledge, the estimation of unidentifiable parameters can be regularised (by priors) in a straight forward way.  This work draws the focus on typical cases in systems biology: relative data, nonlinear ordinary differential equation models and few data points. It also investigates the consequences of parameter estimation from steady state data; consequences such as performance benefits.  In biology the



data is almost exclusively relative, the raw measurements (e.g. western blot intensities) are normalised by control experiments or a reference value within a series and require the model to do the same when comparing its output to the data.  Several sampling algorithms are compared in terms of effective sampling speed and necessary adaptations to relative and steady state data are explained.