1.

Record Nr.

UNINA9910819084903321

Autore

Mosher Lee <1957->

Titolo

Quasi-actions on trees II : finite depth Bass-Serre trees / / Lee Mosher, Michah Sageev, Kevin Whyte

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2011

©2011

ISBN

1-4704-0625-X

Descrizione fisica

1 online resource (105 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; Number 1008

Disciplina

512/.2

Soggetti

Geometric group theory

Rigidity (Geometry)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"November 2011, volume 214, number 1008 (fourth of 5 numbers)."

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

""Contents""; ""Chapter 1. Introduction""; ""1.1. Example applications""; ""1.2. The methods of proof: a special case""; ""1.3. The general setting""; ""1.4. Statements of results""; ""1.5. Structure of the paper""; ""Chapter 2. Preliminaries""; ""2.1. Coarse language""; ""2.2. Coarse properties of subgroups""; ""2.3. Coboundedness principle""; ""2.4. Bass-Serre trees and Bass-Serre complexes""; ""2.5. Irreducible graphs of groups""; ""2.6. Coarse PD(n) spaces and groups""; ""2.7. The methods of proof: the general case""; ""Chapter 3. Depth Zero Vertex Rigidity""

""3.1. A sufficient condition for depth zero vertex rigidity""""3.2. Proof of the Depth Zero Vertex Rigidity Theorem""; ""Chapter 4. Finite Depth Graphs of Groups""; ""4.1. Definitions and examples""; ""4.2. Proof of the Vertex�Edge Rigidity Theorem 2.11""; ""4.3. Reduction of finite depth graphs of groups""; ""Chapter 5. Tree Rigidity""; ""5.1. Examples and motivations""; ""5.2. Outline of the Tree Rigidity Theorem""; ""5.3. Special case: isolated edge spaces""; ""5.4. Special case: all edges have depth one""; ""5.4.1. Proof of Lemma 5.5: an action on a 2-complex""

""5.4.2. Proof of the Tracks Theorem 5.7""""5.5. Proof of the Tree Rigidity Theorem""; ""Chapter 6. Main Theorems""; ""Chapter 7. Applications and Examples""; ""7.1. Patterns of edge spaces in a vertex space""; ""7.2. Hn vertex groups and Z edge groups""; ""7.3. H3 vertex



groups and surface fiber edge groups""; ""7.4. Surface vertex groups and cyclic edge groups""; ""7.5. Graphs of abelian groups""; ""7.6. Quasi-isometry groups and classification""; ""Bibliography""; ""Index""