1.

Record Nr.

UNINA9910512509903321

Autore

Gallesi, Erica <1993-  >

Titolo

Da Pigmalione a Pinocchio : miti arcaici e cartoni animati / Erica Gallesi ; introduzione di Giulio Giorello

Pubbl/distr/stampa

Milano, : Jouvence, 2017

ISBN

978-88-7801-579-1

Descrizione fisica

92 p. ; 21 cm

Collana

Filosofia ; 18

Disciplina

791.43615

Locazione

FSPBC

Collocazione

COLLEZ. 3081 (18)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Contiene bibl. pp. 85-92)



2.

Record Nr.

UNINA9910818391803321

Autore

Drumond Lucas Rego

Titolo

Factorization models for multi-relational data / / by Lucas Rego Drumond

Pubbl/distr/stampa

Gottingen, [Germany] : , : Cuvillier Verlag, , 2014

©2014

ISBN

3-7369-4734-8

Edizione

[1. Auflage.]

Descrizione fisica

1 online resource (137 pages) : illustrations

Disciplina

025.42

Soggetti

Automatic classification

Machine learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.



3.

Record Nr.

UNINA9910304132703321

Autore

Kaeding Matthias

Titolo

Bayesian Analysis of Failure Time Data Using P-Splines / / by Matthias Kaeding

Pubbl/distr/stampa

Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Spektrum, , 2015

ISBN

3-658-08393-X

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (117 p.)

Collana

BestMasters, , 2625-3615

Disciplina

510

519.2

570285

610724

Soggetti

Probabilities

Medicine - Research

Biology - Research

Bioinformatics

Probability Theory

Biomedical Research

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Relative Risk and Log-Location-Scale Family -- Bayesian P-Splines -- Discrete Time Models -- Continuous Time Models.

Sommario/riassunto

Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model. Contents Relative Risk and Log-Location-Scale Family Bayesian P-Splines Discrete Time Models Continuous Time



Models Target Groups Researchers and students in the fields of statistics, engineering, and life sciences Practitioners in the fields of reliability engineering and data analysis involved with lifetimes The Author Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics.