|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910818190403321 |
|
|
Autore |
Nourani Cyrus F. |
|
|
Titolo |
A functorial model theory : newer applications to algebraic topology, descriptive sets, and computing categories topos / / Cyrus F. Nourani, PhD |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Toronto : , : Apple Academic Press, Inc. |
|
Boca Raton, FL : , : CRC Press, , [2014] |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-429-18873-0 |
1-4822-3150-6 |
|
|
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (296 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Infinitary languages |
Algebraic topology |
Descriptive set theory |
Categories (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; About the Author; Contents; Preface; Chapter 1: Introduction; Chapter 2: Categorical Preliminaries; Chapter 3: Infinite Language Categories; Chapter 4: Functorial Fragment Model Theory; Chapter 5: Algebraic Theories, Categories, and Models; Chapter 6: Generic Functorial Models and Topos; Chapter 7: Models, Sheaves, and Topos; Chapter 8: Functors on Fields; Chapter 9: Filters and Ultraproducts on Projective Sets; Chapter 10: A Glimpse on Algebraic Set Theory; Bibliography |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models. |
|
|
|
|
|
|
|