|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910818103303321 |
|
|
Autore |
Jain Piyanka |
|
|
Titolo |
Behind every good decision : how anyone can use business analytics to turn data into profitable insight / / Piyanka Jain and Puneet Sharma ; edited by Lakshmi Jayaraman |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York : , : American Management Association, , 2015 |
|
©2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-4002-3104-3 |
0-8144-4922-0 |
|
|
|
|
|
|
|
|
Edizione |
[1st edition] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (276 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Business planning - Statistical methods |
Decision making - Statistical methods |
Management - Statistical methods |
Data mining |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
""Cover""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments""; ""Introduction""; ""SECTION 1�HELLO ANALYTICS!""; ""1. Analytics or Die""; ""2. What Is Analytics?""; ""3. Top Seven Analytics Methodologies""; ""SECTION 2�DIVING DEEP""; ""4. B.A.D.I.R.: Business Analytics in Five Simple Steps""; ""5. Predictive Analytics, aka Rocket Science""; ""6. Data and Analytics Tools""; ""SECTION 3�LEADERSHIP TOOLKIT""; ""7. Analytics and Leadership""; ""8. Competing on Analytics""; ""9. Analytics Leader's Playbook""; ""10. Making It Happen""; ""11. Common Pitfalls"" |
""SECTION 4�ANALYTICS AT WORK: TEN CASE STUDIES""""Appendix""; ""Notes""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Y""; ""Z""; ""About the Authors""; ""Free Sample Chapter from Data Crush by Christopher Surdak"" |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
There is a costly misconception in business today-that the only data that matters is BIG data, and that complex tools and data scientists are required to extract any practical information. Nothing could be further |
|
|
|
|