|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910817597903321 |
|
|
Autore |
Kienitz Joerg |
|
|
Titolo |
Financial modelling : theory, implementation and practice (with Matlab source) / / Joerg Kienitz, Daniel Wetterau |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : Wiley, 2012 |
|
|
|
|
|
|
|
ISBN |
|
1-118-41329-6 |
1-118-81856-3 |
1-283-59301-7 |
9786613905468 |
1-118-41331-8 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (735 p.) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Finance - Mathematical models |
Numerical analysis |
Finance - Mathematical models - Computer programs |
Numerical analysis - Computer programs |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Financial Modelling; Contents; Introduction; 1 Introduction and Management Summary; 2 Why We Have Written this Book; 3 Why You Should Read this Book; 4 The Audience; 5 The Structure of this Book; 6 What this Book Does Not Cover; 7 Credits; 8 Code; PART I FINANCIAL MARKETS AND POPULAR MODELS; 1 Financial Markets - Data, Basics and Derivatives; 1.1 Introduction and Objectives; 1.2 Financial Time-Series, Statistical Properties of Market Data and Invariants; 1.2.1 Real World Distribution; 1.3 Implied Volatility Surfaces and Volatility Dynamics; 1.3.1 Is There More than just a Volatility? |
1.3.2 Implied Volatility 1.3.3 Time-Dependent Volatility; 1.3.4 Stochastic Volatility; 1.3.5 Volatility from Jumps; 1.3.6 Traders' Rule of Thumb; 1.3.7 The Risk Neutral Density; 1.4 Applications; 1.4.1 Asset Allocation; 1.4.2 Pricing, Hedging and Risk Management; 1.5 General Remarks on Notation; 1.6 Summary and Conclusions; 1.7 Appendix - Quotes; 2 Diffusion Models; 2.1 Introduction and Objectives; 2.2 Local Volatility Models; 2.2.1 The Bachelier and the Black-Scholes Model; |
|
|
|
|
|
|
|
|
|
|
|
2.2.2 The Hull-White Model; 2.2.3 The Constant Elasticity of Variance Model; 2.2.4 The Displaced Diffusion Model |
2.2.5 CEV and DD Models 2.3 Stochastic Volatility Models; 2.3.1 Pricing European Options; 2.3.2 Risk Neutral Density; 2.3.3 The Heston Model (and Extensions); 2.3.4 The SABR Model; 2.3.5 SABR - Further Remarks; 2.4 Stochastic Volatility and Stochastic Rates Models; 2.4.1 The Heston-Hull-White Model; 2.5 Summary and Conclusions; 3 Models with Jumps; 3.1 Introduction and Objectives; 3.2 Poisson Processes and Jump Diffusions; 3.2.1 Poisson Processes; 3.2.2 The Merton Model; 3.2.3 The Bates Model; 3.2.4 The Bates-Hull-White Model; 3.3 Exponential Lévy Models; 3.3.1 The Variance Gamma Model |
3.3.2 The Normal Inverse Gaussian Model 3.4 Other Models; 3.4.1 Exponential Lévy Models with Stochastic Volatility; 3.4.2 Stochastic Clocks; 3.5 Martingale Correction; 3.6 Summary and Conclusions; 4 Multi-Dimensional Models; 4.1 Introduction and Objectives; 4.2 Multi-Dimensional Diffusions; 4.2.1 GBM Baskets; 4.2.2 Libor Market Models; 4.3 Multi-Dimensional Heston and SABR Models; 4.3.1 Stochastic Volatility Models; 4.4 Parameter Averaging; 4.4.1 Applications to CMS Spread Options; 4.5 Markovian Projection; 4.5.1 Baskets with Local Volatility |
4.5.2 Markovian Projection on Local Volatility and Heston Models 4.5.3 Markovian Projection onto DD SABR Models; 4.6 Copulae; 4.6.1 Measures of Concordance and Dependency; 4.6.2 Examples; 4.6.3 Elliptical Copulae; 4.6.4 Archimedean Copulae; 4.6.5 Building New Copulae from Given Copulae; 4.6.6 Asymmetric Copulae; 4.6.7 Applying Copulae to Option Pricing; 4.6.8 Applying Copulae to Asset Allocation; 4.7 Multi-Dimensional Variance Gamma Processes; 4.8 Summary and Conclusions; PART II NUMERICAL METHODS AND RECIPES; 5 Option Pricing by Transform Techniques and Direct Integration |
5.1 Introduction and Objectives |
|
|
|
|
|
|
Sommario/riassunto |
|
Financial Modelling - Theory, Implementation and Practice is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options. The book is split into three parts. The first part considers |
|
|
|
|
|
|
|
| |