1.

Record Nr.

UNINA9910817381403321

Autore

Hearn E. J (Edwin John)

Titolo

An introduction to the mechanics of elastic and plastic deformation of solids and structural materials / / E.J. Hearn

Pubbl/distr/stampa

Oxford ; ; Boston, : Butterworth-Heinemann, 1997

ISBN

1-281-04769-4

9786611047696

0-08-052399-4

Edizione

[3rd ed.]

Descrizione fisica

1 online resource (xxviii, 456 p.)

Collana

Mechanics of materials ; ; 1

Disciplina

620.1/123

Soggetti

Strength of materials

Elasticity

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Front Cover; Mechanics of Materials 1; Copyright Page; Contents; Introduction; Notation; Chapter 1. Simple Stress and Strain; 1.1 Load; 1.2 Direct or normal stress ( σ ); 1.3 Direct strain ( ε ); 1.4 Sign convention for direct stress and strain; 1.5 Elastic materials - Hooke's law; 1.6 Modulus of elasticity - Young's modulus; 1.7 Tensile test; 1.8 Ductile materials; 1.9 Brittle materials; 1.10 Poisson's ratio; 1.11 Application of Poisson's ratio to a two-dimensional stress system; 1.12 Shear stress; 1.13 Shear strain; 1.14 Modulus of rioidity; 1.15 Double shear

1.16 Allowable workino stress - factor of safety1.17 Load factor; 1.18 Temperature stresses; 1.19 Stress concentrations - stress concentration factor; 1.20 Toughness; 1.21 Creep and fatigue; Examples; Problems; Bibliography; Chapter 2. Compound Bars; Summary; 2.1 Compound bars subjected to external load; 2.2 Compound bars- ""equivalent"" or ""combined"" modulus; 2.3 Compound bars subjected to temperature change; 2.4 Compound bar (tube and rod); 2.5 Compound bars subjected to external load and temperature effects; 2.6 Compound thick cylinders subjected to temperature changes; Examples

ProblemsChapter 3. Shearing Force and Bending Moment Diagrams; Summary; 3.1 Shearing force and bending moment; 3.2 S.F. and B.M.



diagrams for beams carrying concentrated loads only; 3.3 S.F and B.M. diagrams for uniformly distributed loads; 3.4 S.F. and B.M. diagrams for combined concentrated and uniformly distributed loads; 3.5 Points of contraflexure; 3.6 Relationship between S.F. Q, B.M. M, and intensity of loading w; 3.7 S.F. and B.M. diagrams for an applied couple or moment; 3.8 S.F. and B.M. diagrams for inclined loads; 3.9 Graphical construction of S.F and B.M. diagrams

3.10 S.F. and B.M. diagrams for beams carrying distributed loads of increasing value3.11 S.F. at points of application of concentrated loads; Examples; Problems; Chapter 4. Bending; Summary; Introduction; 4.1 Simple bending theory; 4.2 Neutral axis; 4.3 Section modulus; 4.4 Second moment of area; 4.5 Bending of composite or flitched beams; 4.6 Reinforced concrete beams - simple tension reinforcement; 4.7 Skew loading; 4.8 Combined bending and direct stress-eccentric loading; 4.9 ""Middle-quarter"" and ""middle-third"" rules; 4.10 Shear stresses owing to bending; 4.11 Strain energy in bending

4.12 Limitations of the simple bending theoryExamples; Problems; Chapter 5. Slope and Deflection of Beams; Summary; Introduction; 5.1 Relationship between loading, S.F., B.M., slope and deflection; 5.2 Direct integration method; 5.3 Macaulay's method; 5.4 Macaulay's method for u.d.l's; 5.5 Macaulay's method for beams with u.d.l, applied over part of the beam; 5.6 Macaulay's method for couple applied at a point; 5.7 Mohr 's ""area-moment"" method; 5.8 Principle of superposition; 5.9 Energy method; 5.10 Maxwell 's theorem of reciprocal displacements

5.11 Continuous beams - Clapeyron 's ""three-moment"" equation

Sommario/riassunto

One of the most important subjects for any student of engineering to master is the behaviour of materials and structures under load.  The way in which they react to applied forces, the deflections resulting and the stresses and strains set up in the bodies concerned are all vital considerations when designing a mechanical component such that it will not fail under predicted load during its service lifetime.All the essential elements of a treatment of these topics are contained within this course of study, starting with an introduction to the concepts of stress and strain, shear force a