|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910817355103321 |
|
|
Autore |
Ibe Oliver C (Oliver Chukwudi), <1947-> |
|
|
Titolo |
Elements of random walk and diffusion processes / / Oliver C. Ibe |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : John Wiley & Sons, Inc., 2013 |
|
|
|
|
|
|
|
ISBN |
|
1-118-61793-2 |
1-118-61805-X |
1-118-62985-X |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (278 p.) |
|
|
|
|
|
|
Collana |
|
Wiley series in operations research and management science |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Random walks (Mathematics) |
Diffusion processes |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Elements of Random Walk and Diffusion Processes; Copyright; Contents; Preface; Acknowledgments; 1 Review of Probability Theory; 1.1 Introduction; 1.2 Random Variables; 1.2.1 Distribution Functions; 1.2.2 Discrete Random Variables; 1.2.3 Continuous Random Variables; 1.2.4 Expectations; 1.2.5 Moments of Random Variables and the Variance; 1.3 Transform Methods; 1.3.1 The Characteristic Function; 1.3.2 Moment-Generating Property of the Characteristic Function; 1.3.3 The s-Transform; 1.3.4 Moment-Generating Property of the s-Transform; 1.3.5 The z-Transform |
1.3.6 Moment-Generating Property of the z-Transform1.4 Covariance and Correlation Coefficient; 1.5 Sums of Independent Random Variables; 1.6 Some Probability Distributions; 1.6.1 The Bernoulli Distribution; 1.6.2 The Binomial Distribution; 1.6.3 The Geometric Distribution; 1.6.4 The Poisson Distribution; 1.6.5 The Exponential Distribution; 1.6.6 Normal Distribution; 1.7 Limit Theorems; 1.7.1 Markov Inequality; 1.7.2 Chebyshev Inequality; 1.7.3 Laws of Large Numbers; 1.7.4 The Central Limit Theorem; Problems; 2 Overview of Stochastic Processes; 2.1 Introduction |
2.2 Classification of Stochastic Processes2.3 Mean and Autocorrelation Function; 2.4 Stationary Processes; 2.4.1 Strict-Sense Stationary Processes; 2.4.2 Wide-Sense Stationary Processes; 2.5 Power Spectral |
|
|
|
|