1.

Record Nr.

UNINA990000274610403321

Autore

Chandrasekhar, Sivaramakrishna

Titolo

Liquid crystals / Sivaramakrishna Chandrasekhar

Pubbl/distr/stampa

London : Cambridge University Press, 1977

Descrizione fisica

X, 342 p. : ill. ; 24 cm

Collana

Cambridge monographs on physics

Disciplina

548.9

Locazione

DINCH

DINEL

DCH

Collocazione

04 044-157

10 B III 204

DCH 031-55

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910817242703321

Autore

Hedberg Lars Inge <1935->

Titolo

An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation / / Lars Inge Hedberg, Yuri Netrusov

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2007

©2007

ISBN

1-4704-0486-9

Descrizione fisica

1 online resource (112 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 188, Number 882

Disciplina

515.73

Soggetti

Function spaces

Spectral synthesis (Mathematics)

Approximation theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Volume 188, Number 882 (third of 4 numbers)."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

""Contents""; ""Introduction. Notation""; ""Chapter 1. A Class of Function Spaces""; ""1.1. Definitions and Basic Properties""; ""1.2. Some Lemmas""; ""1.3. Proof of Theorem 1.1.14""; ""1.4. Some Lemmas on Orthogonalization""; ""1.5. Proof of Theorem 1.1.15""; ""1.6. Homogeneous Spaces""; ""1.7. Proof of Theorem 1.6.12""; ""1.8. Proof of Theorem 1.6.11""; ""Chapter 2. Differentiability and Spectral Synthesis""; ""2.1. Capacities and Differentials""; ""2.2. Spectral Synthesis""; ""2.3. Spectral Synthesis in Spaces of Distributions""; ""2.4. Invariant Subspaces and a Theorem of Whitney""

""Chapter 3. Luzin Type Theorems""""3.1. Luzin Approximation of Functions""; ""3.2. Luzin Approximation of Distributions""; ""Appendix. Whitney's Approximation Theorem in L[sub(p)](R[sup(N)]), p > 0""; ""Bibliography""