|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910817159803321 |
|
|
Autore |
Gan Guojun <1979, > |
|
|
Titolo |
Data clustering in C++ : an object-oriented approach / / Guojun Gan |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Boca Raton, : CRC Press, 2011 |
|
Boca Raton, Fla. : , : Chapman and Hall/CRC, , 2011 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9780429109782 |
0429109784 |
9781439862247 |
1439862249 |
|
|
|
|
|
|
|
|
Edizione |
[1st edition] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (512 p.) |
|
|
|
|
|
|
Collana |
|
Chapman & Hall/CRC data mining and knowledge discovery series |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Cluster analysis - Data processing |
C++ (Computer program language) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 469-486) and indexes. |
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; Dedication; Contents; List of Figures; List of Tables; Preface; I. Data Clustering and C++ Preliminaries; 1. Introduction to Data Clustering; 2. The Unified Modeling Language; 3. Object-Oriented Programming and C++; 4. DesignPatterns; 5. C++ Libraries and Tools; II. A C++ Data Clustering Framework; 6. The Clustering Library; 7. Datasets; 8. Clusters; 9. Dissimilarity Measures; 10. Clustering Algorithms; 11. Utility Classes; III. Data Clustering Algorithms; 12. Agglomerative Hierarchical Algorithms; 13. DIANA; 14. The k-means Algorithm; 15. The c-means Algorithm |
16. The k-prototypes Algorithm17. The Genetic k-modes Algorithm; 18. The FSC Algorithm; 19. The Gaussian Mixture Algorithm; 20. A Parallel k-means Algorithm; A. Exercises and Projects; B. Listings; C. Software; Bibliography |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering |
|
|
|
|