| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830688303321 |
|
|
Titolo |
Two-dimensional-materials-based membranes : preparation, characterization, and applications / / edited by Wanqin Jin and Gongping Liu |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-82985-7 |
3-527-82983-0 |
3-527-82984-9 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (397 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Two-dimensional materials |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- References -- Chapter 2 Fabrication Methods for 2D Membranes -- 2.1 Introduction -- 2.2 Synthesis of Nanosheets -- 2.2.1 Top‐Down Method -- 2.2.1.1 Mechanical‐Force Exfoliation -- 2.2.1.2 Ion‐Intercalation Exfoliation -- 2.2.1.3 Oxidation‐Assisted Exfoliation -- 2.2.1.4 Selective‐Etching Method -- 2.2.2 Bottom‐Up Method -- 2.2.2.1 Chemical Vapor Deposition -- 2.2.2.2 Hydro/Solvothermal Synthesis -- 2.2.2.3 Interfacial Synthesis -- 2.3 Membrane Structures and Fabrication Methods -- 2.3.1 Two‐Dimensional‐Material Nanosheet Membranes -- 2.3.1.1 Zeolite Membrane -- 2.3.1.2 MOF Membrane -- 2.3.1.3 Porous Graphene Membrane -- 2.3.2 Two‐Dimensional‐Material Laminar Membranes -- 2.3.2.1 Assembly Strategies of Laminates -- 2.3.2.2 Nanostructure Controlling of Laminar Membranes -- 2.3.3 Two‐Dimensional‐Materials‐Based Mixed‐Matrix Membranes (MMMs) -- 2.3.3.1 Fabrication Methods of MMMs -- 2.3.3.2 Effect of Physicochemical Properties of 2D Fillers -- 2.3.4 Other Hybrid Membranes -- 2.4 Summary and Outlook -- References -- Chapter 3 Nanoporous Single‐Layer Graphene Membranes for Gas Separation -- 3.1 Introduction -- 3.2 Gas‐Separation Potential of N‐SLG Membranes -- 3.3 Engineering Gas‐ |
|
|
|
|
|
|
|
|
|
Selective Vacancy Defects -- 3.3.1 Bottom‐Up Synthesis of N‐SLG -- 3.3.2 Postsynthetic Etching of SLG -- 3.3.2.1 Physical Etching Methods -- 3.3.2.2 Chemical Etching Techniques -- 3.4 Fabrication of Large‐Area N‐SLG Membranes -- 3.5 Summary and Outlook -- References -- Chapter 4 Graphene‐Based Membranes for Water Separation -- 4.1 Introduction -- 4.2 Water Transport Mechanisms in Graphene‐Based Membranes -- 4.2.1 Internal‐Geometry‐Mediated Transport -- 4.2.1.1 Size Effects -- 4.2.1.2 Length Effects -- 4.2.2 Surface‐Chemistry‐Mediated Transport -- 4.2.3 External‐Environment‐Mediated Transport. |
4.2.3.1 Solution Chemistry Effects -- 4.2.3.2 Applied Pressure Effects -- 4.2.3.3 Applied Potential Effects -- 4.2.4 Guest‐Material‐Mediated Transport -- 4.2.4.1 Stabilizing Effects -- 4.2.4.2 Size‐Controlling Effects -- 4.2.4.3 Surface‐Chemistry‐Modifying Effects -- 4.2.4.4 Smart Gating Effects -- 4.3 Graphene‐based Membrane Water Separation Applications -- 4.3.1 Nanofiltration -- 4.3.2 Reverse Osmosis -- 4.3.3 Forward Osmosis -- 4.4 Conclusions and Perspectives -- References -- Chapter 5 Graphene‐Based Membranes for Ions Separation -- 5.1 Introduction -- 5.2 Single‐Layer Graphene -- 5.2.1 Theoretical Calculations -- 5.2.2 Experimental Validations -- 5.3 Graphene Oxide Membranes -- 5.3.1 Structure of Graphene Oxide and Graphene Oxide Membranes -- 5.3.2 Ultrafast Water Permeability -- 5.3.3 Ion Selectivity -- 5.3.4 Microstructure Optimization for Desalination -- 5.3.5 Interlayer Spacing Control for Desalination -- 5.3.5.1 Cross‐Linking -- 5.3.5.2 Reduction -- 5.3.5.3 External Pressure -- 5.3.6 Charge Modification for Desalination -- 5.3.7 External Field Modulated Ion Transport -- 5.3.8 Ion Transport Through Planar GO Laminates -- 5.4 Summary and Perspective -- References -- Chapter 6 Graphene‐Based Membranes for Pervaporation -- 6.1 Introduction -- 6.2 Mass‐Transport Mechanism -- 6.2.1 Mass Transport in Pervaporation Process -- 6.2.2 Mass Transport in GO Membrane -- 6.3 Progresses in GO Membranes for Pervaporation -- 6.3.1 Controlling Self‐Assembly Condition -- 6.3.2 Designing Graphene Oxide‐Framework (GOF) Membrane -- 6.3.3 Assembly with Polymers -- 6.3.4 Intercalating Nanomaterials -- 6.3.5 Tuning Surface Structure -- 6.4 Summary and Perspective -- References -- Chapter 7 Two‐Dimensional‐Materials Membranes for Gas Separations -- 7.1 Introduction -- 7.2 2D‐Materials Membranes -- 7.2.1 Zeolites -- 7.2.2 Graphene‐Based Materials. |
7.2.2.1 Nanoporous Graphene -- 7.2.2.2 Graphene Oxide -- 7.2.3 MOFs -- 7.2.4 COFs -- 7.2.5 g‐C3N4 -- 7.2.6 MXenes -- 7.2.7 Other 2D Materials -- 7.3 Preparation of 2D Nanosheets -- 7.3.1 Top‐Down Method -- 7.3.2 Bottom‐Up Method -- 7.4 Preparation of 2D‐Materials Membranes -- 7.4.1 Top‐Down Method -- 7.4.1.1 Filtration‐Assisted Assembly -- 7.4.1.2 Coating -- 7.4.1.3 Layer‐by‐Layer Assembly -- 7.4.2 Bottom‐Up Method -- 7.5 Gas Separations -- 7.5.1 H2/CO2, H2/N2, and H2/CH4 Separations -- 7.5.2 CO2/N2 and CO2/CH4 Separations -- 7.5.3 Other Gas/Vapor Separations -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Layered Double Hydroxide Membranes for Versatile Separation Applications -- 8.1 Introduction on LDHs and LDH‐Based Membranes -- 8.2 Strategy for LDH‐Based Membrane Preparation -- 8.2.1 Solution‐Based In Situ Growth -- 8.2.2 Post‐Synthetic Deposition -- 8.2.3 Blending with Polymers -- 8.3 Research Progress on LDH‐Based Membranes -- 8.3.1 Interlayer Gallery‐Based Separation -- 8.3.1.1 Pristine Interlayer Gallery‐Based Separation -- 8.3.1.2 Regenerated Interlayer Gallery‐Based Separation -- 8.3.2 Geometric Shape‐Based Separation -- 8.3.2.1 Geometric Shape‐Based Gas Separation -- 8.3.2.2 Geometric Shape‐Based Liquid Separation -- 8.3.2.3 Geometric Shape‐Based Particulate Matter Capture -- 8.3.2.4 Geometric Shape‐Based Sacrificing Templates -- |
|
|
|
|
|
|
|
8.3.3 Unusual Thermal Behavior‐Based Separation -- 8.3.4 Photocatalytic Activity‐Based Separation -- 8.3.5 Positive Surface Charge‐Based Separation -- 8.3.5.1 Positive Surface Charge‐Based Ultrafiltration -- 8.3.5.2 Positive Surface Charge‐Based Nanofiltration -- 8.3.5.3 Positive Surface Charge‐Based Reverse Osmosis -- 8.3.5.4 Positive Surface Charge‐Based Forward Osmosis -- 8.3.5.5 Positive Surface Charge‐Based Nanocomposite Membranes -- 8.3.6 Hydrophilicity‐Based Water Treatment. |
8.3.6.1 Hydrophilicity‐Based Microfiltration -- 8.3.6.2 Hydrophilicity‐Based Ultrafiltration -- 8.3.6.3 Hydrophilicity‐Based Nanofiltration -- 8.3.6.4 Hydrophilicity‐Based Reverse Osmosis -- 8.3.6.5 Hydrophilicity‐Based Forward Osmosis -- 8.4 Summary and Outlook -- References -- Chapter 9 MXene: A Novel Two‐Dimensional Membrane Material for Molecular Separation -- 9.1 Introduction -- 9.2 Synthesis and Processing -- 9.2.1 Synthesis of Multilayered MXene Phases -- 9.2.2 Fabrication of Single MXene Flakes -- 9.2.3 Surface Properties of MXene Flakes -- 9.2.4 Preparation of MXene‐Based Membranes -- 9.2.4.1 Drop‐Coating -- 9.2.4.2 Spraying or Spinning Coating -- 9.2.4.3 Pressure‐Assisted Filtration -- 9.3 MXene‐Based Membranes for Molecular Separation -- 9.3.1 Liquid Separation -- 9.3.1.1 Desalination -- 9.3.1.2 Organic Solvent Nanofiltration -- 9.3.1.3 Pervaporation Solvent Dehydration -- 9.3.1.4 Dyes and Natural Organic Matter Rejection -- 9.3.1.5 Oil-Water Separation -- 9.3.2 Gas Separation -- 9.4 Conclusions and Perspective -- References -- Chapter 10 2D‐Materials Mixed‐Matrix Membranes -- 10.1 Introduction -- 10.2 Two‐Dimensional Materials as Dispersed Phase of MMMs -- 10.2.1 Graphene Oxide (GO) -- 10.2.1.1 Increasing Molecular Transport Channels -- 10.2.1.2 Reducing Nonselective Defects -- 10.2.1.3 Introducing the Functional Sites for Facilitated Transport -- 10.2.2 Metal-Organic Frameworks (MOFs) -- 10.2.2.1 Increasing Molecular Transport Channels -- 10.2.2.2 Enhancing the Interfacial Compatibility Between Nanomaterials and Polymers -- 10.2.3 Covalent Organic Frameworks (COFs) -- 10.2.3.1 Increasing Molecule Transport Channels -- 10.2.3.2 Introducing Facilely‐Tailored Functionality -- 10.2.3.3 Constructing Hierarchical Structures in MMMs -- 10.2.4 Other 2D Materials -- 10.2.4.1 Transition‐Metal Dichalcogenides (TMDs). |
10.2.4.2 Graphitic Carbon Nitride (g‐C3N4) -- 10.2.4.3 MXenes -- 10.3 Two‐Dimensional Material as Continuous Phase of MMMs -- 10.3.1 Graphene Oxide (GO) -- 10.3.1.1 Controlling Interlayer Spacing -- 10.3.1.2 Modulating the Physical/Chemical Microenvironment -- 10.3.2 Metal-Organic Framework (MOF) -- 10.3.2.1 Enhancing Processability and Stability of MOFs -- 10.3.2.2 Modulating the Physical/Chemical Microenvironment -- 10.3.3 Covalent Organic Frameworks (COFs) -- 10.3.3.1 Regulating the Physical/Chemical Microenvironment -- 10.3.3.2 Modulating Crystallinity, Porosity, Mechanical Properties -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Transport Mechanism of 2D Membranes -- 11.1 Introduction -- 11.2 Fundamentals of Mass Transport Through Membranes -- 11.2.1 Transport Mechanism in Porous Membranes -- 11.2.2 Transport Mechanism in Nonporous Membranes -- 11.2.3 Transport Mechanism in Charged Membranes -- 11.2.4 Permeability-Selectivity Trade‐Off for Polymers -- 11.3 Nanofluidic Transport Through Confined Dimensions -- 11.3.1 Confinement Architectures for Artificial Nanofluidic Systems -- 11.3.2 Continuum Modeling of Nanofluidic Transport in Confined Channels -- 11.3.3 Mechanisms of Nanofluidic Transport in Atomically Thin Nanopores -- 11.3.4 Effects of Electrical Double Layer in Nanofluidic Ion Transport -- 11.3.5 Various Confinement Effects in Nanofluidic Transport at the Subnanometer Scale -- 11.3.5.1 Molecular |
|
|
|
|
|
|
|
|
|
|
|
Rearrangement -- 11.3.5.2 Partial Dehydration or Desolvation -- 11.3.5.3 Electrical Effects -- 11.3.5.4 Quantum Effects -- 11.4 Unique Mass‐Transport Properties in 2D Membranes: Structural Aspects -- 11.4.1 Nanoporous Atomically Thin 2D Membranes (NATMs) -- 11.4.2 Staked 2D Membranes with Laminar Structure -- 11.4.3 2D Materials‐Embedded Mixed‐Matrix Membranes (MMMs) -- 11.5 Summary and Outlook -- References. |
Chapter 12 Conclusions and Perspectives. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910816884903321 |
|
|
Titolo |
Advances in geosciences . Volume 20 Solid Earth / / editor-in-chief, Wing-Huen Ip, volume editor-in-chief, Kenji Satake |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore : , : World Scientific, , 2010 |
|
©2010 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (328 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Geophysics |
Earth sciences |
Earth (Planet) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters. |
|
|
|
|
|
|
Nota di contenuto |
|
Editors; Reviewers; Preface; Preface to SE Volume; CONTENTS; Carbonatites in Phong Tho, Lai Chau Province (NW Vietnam): Their Petrogenesis and Relationship with Cenozoic Potassic Alkaline Magmatism N.T. Chi, M.J.F. Flower and D.T. Hung; 1. Introduction; 2. Characteristics of Geology and Mineral-Petrographic Features; 2.1. Characteristics of geochemistry; 2.1.1. Geochemistry of major elements; 2.1.2. Geochemistry of trace elements; 2.1.3. Isotopic composition and aged position of Phong Tho carbonatite |
2.2. Petrogenesis of carbonatite and their relationship with Cenozoic potassic alkaline magmatism in Phong Tho3. Conclusion; Acknowledgments; References; Non-Destructive Detection of Platinum- |
|
|
|
|
|
|
|
|
|
|
|
Bearing Mineral From Geological Sample by Subtraction Imaging with Synchrotron Radiation X-Ray Tetsu Kogiso, Katsuhiko Suzuki, Toshihiro Suzuki and Kentaro Uesugi; 1. Introduction; 2. Analytical Procedures; 3. Results and Discussion; 3.1. Identification of Pt-bearing phase; 3.2. Nugget effect in PTC-1a; 4. Concluding Remarks; Acknowledgments; References |
Trace, Rare Earth Element (REE) and Platinum Group Element (PGE) Geochemistry of the Mafic and Ultramafic Rocks from Bundelkhand Craton, Central India M. Satyanarayanan, V. Balaram, Parijat Roy, K. V. Anjaiah and S. P. Singh1. Introduction; 2. Geological Setting; 3. Petrography; 4. Analytical Methods; 5. Analytical Results; 5.1. Major oxides and trace elements; 5.2. PGE and Au; 6. Discussion; 6.1. Effect of alteration; 6.2. Subduction zone environment of the MIP; 6.3. PGE behavior in the Madaura ultramafic rocks; 6.3.1. Fractionation of IPGE and PPGE |
6.3.2. Fractionation of Pt-Pd and the origin of positive Pt anomalies 6.4. Partial melting; 6.5. Mantle metasomatism; 7. Conclusions; Acknowledgments; References; PGE Exploration Studies in India - A Few Initiatives V. Balaram; 1. Introduction; 2. PGE Occurrences in the World; 2.1. Magmatic deposits; 2.2. Layered intrusions; 2.3. Intrusive and extrusive mafic-ultramafic rocks; 2.4. Other types; 2.5. Manganese nodules/crust as possible sources of PGE; 3. PGE Occurrences in India; 3.1. Madawara igneous province (MIP); 4. Ophiolite Complexes; 5. Continental Flood Basalts; 6. PGE in Black shales |
7. PGE-Exploration Studies 8. Chondrite-Normalized PGE and Au Distribution Patterns; 9. PGE Analysis in Exploration Studies - General Principles; 10. In-Situ Analysis of PGE; Acknowledgments; References; PGE Mineralisation in Ultramafic/Mafic Enclaves of Ikauna Area, Bundelkhand Craton, India S. A. Farooqui and P. K. Singh; 1. Introduction; 2. Geological Setting; 3. Petrography; 4. Chemical Analyses; 5. Mineralization; 6. Disscussion; 7. Conclusions; Acknowledgements; References |
Determination of Ultra Low Levels of Platinum Group of Elements in Kimberlites by ICP-MS: Modified Decomposition Procedure Using Double NiS Fire Assay Followed by Te Co Precipitation Parijat Roy, Vysetti Balaram, Gnaneshwar Rao and Manavalan Satyanarayan |
|
|
|
|
|
|
Sommario/riassunto |
|
This invaluable volume set of Advances in Geosciences continues the excellent tradition of the Asia-Oceania scientific community in providing the most up-to-date research results on a wide range of geosciences and environmental science. The information is vital to the understanding of the effects of climate change, extreme weathers on the most populated regions and fastest moving economies in the world. Besides, these volumes also highlight original papers from many prestigious research institutions which are doing cutting edge study in atmospheric physics, hydrological science and water resou |
|
|
|
|
|
|
|
| |