|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910816879203321 |
|
|
Autore |
Blackmore Denis L |
|
|
Titolo |
Nonlinear dynamical systems of mathematical physics : spectral and symplectic integrability analysis / / Denis Blackmore, Anatoliy K. Prykarpatsky, Valeriy Hr. Samoylenko |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore ; ; Hackensack, N.J., : World Scientific, c2011 |
|
|
|
|
|
|
|
ISBN |
|
1-283-23479-3 |
9786613234797 |
981-4327-16-6 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (563 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
PrikarpatskiĭA. K (Anatoliĭ Karolevich) |
SamoylenkoValeriy Hr |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differentiable dynamical systems |
Nonlinear theories |
Symplectic geometry |
Spectrum analysis - Mathematics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; Contents; Chapter 1 General Properties of Nonlinear Dynamical Systems; 1.1 Finite-dimensional dynamical systems; 1.1.1 Invariant measure; 1.1.2 The Liouville condition; 1.1.3 The Poincaré theorem; 1.1.4 The Birkhoff-Khinchin theorem; 1.1.5 The Birkhoff-Khinchin theorem for discrete dynamical systems; 1.2 Poissonian and symplectic structures on manifolds; 1.2.1 Poisson brackets; 1.2.2 The Liouville theorem and Hamilton-Jacobi method; 1.2.3 Dirac reduction: Symplectic and Poissonian structures on submanifolds |
Chapter 2 Geometric and Algebraic Properties of Nonlinear Dynamical Systems with Symmetry: Theory and Applications2.1 The Poisson structures and Lie group actions on manifolds: Introduction; 2.2 Lie group actions on Poisson manifolds and the orbit structure; 2.3 The canonical reduction method on symplectic spaces and related geometric structures on principal fiber bundles; 2.4 The form of reduced symplectic structures on cotangent spaces to Lie group manifolds and associated canonical connections |
|
|
|
|