| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910816361903321 |
|
|
Autore |
Marcus M (Moshe), <1937-> |
|
|
Titolo |
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014] |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (264 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter Series in Nonlinear Analysis and Applications ; ; 21 |
De Gruyter series in nonlinear analysis and applications, , 0941-813X ; ; 21 |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Elliptic |
Differential equations, Nonlinear |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic |
|
|
|
|
|
|
|
|
|
|
|
|
|
equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations. |
|
|
|
|
|
|
2. |
Record Nr. |
UNISALENTO991003253209707536 |
|
|
Autore |
Fea, Carlo <1753-1836> |
|
|
Titolo |
Risposta dell'abate Carlo Fea giureconsulto alle osservazioni del sig. cav. Onofrio Boni sul tomo III. della Storia delle arti del disegno di Giov. Winckelmann pubblicate in Roma nelle sue Memorie per le belle arti, ne' mesi di marzo, aprile, maggio, e giugno del corrente anno MDCCLXXXVI |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
In Roma : nella Stamperia Pagliarini, [1786?] |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Microfilm |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
In calce al testo compare la data 21 giugno 1786. |
Front. con incisione. |
Riproduzione in microfiche dell'originale conservato presso la Biblioteca Apostolica Vaticana |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Indicazioni bibliografiche nelle note. |
|
|
|
|
|
| |