|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910815372703321 |
|
|
Titolo |
Representation theory and mathematical physics : conference in honor of Gregg Zuckerman's 60th birthday, October 24-27, 2009, Yale University / / Jeffrey Adams, Bong Lian, Siddhartha Sahi, editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2011] |
|
©2011 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (404 p.) |
|
|
|
|
|
|
Collana |
|
Contemporary mathematics, ; 557 , 0271-4132 |
|
|
|
|
|
|
Classificazione |
|
22E4522E4622E4717B6517B6817B6933D52 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Linear algebraic groups |
Representations of Lie groups |
Mathematical physics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents -- Preface -- Expository Papers -- The Plancherel Formula, the Plancherel Theorem, and the Fourier Transform of Orbital Integrals -- Branching Problems of Zuckerman Derived Functor Modules -- Chiral Equivariant Cohomology of Spheres -- 1. Introduction -- 2. Homotopy invariance -- 3. Conformal and quasi-conformal structures -- 4. Chiral equivariant cohomology of homogeneous spaces -- 5. Finite-dimensionality of Hâ??G(M) for compact M -- 6. Chiral equivariant cohomology of spheres -- 7. The chiral point algebra -- Research Papers -- Computing Global Characters -- Stable Combinations of Special Unipotent Representations -- Levi Components of Parabolic Subalgebras of Finitary Lie Algebras -- On Extending the Langlands-Shahidi Method to Arithmetic Quotients of Loop Groups -- The Measurement of Quantum Entanglement and Enumeration of Graph Coverings -- The Dual Pair (Op,q,OSp2,2) and Zuckerman Translation -- On the Algebraic Set of Singular Elements in a Complex Simple Lie Algebra -- An Explicit Embedding of Gravity and the Standard Model in E8 -- From Groups to Symmetric Spaces -- 1. Notation -- 2. Almost diagonal symmetric spaces -- 3. A generalization of Schur's lemma -- 4. Elliptic curves arising from a symmetric space -- 5. Dimension of a nilpotent orbit -- 6. Some |
|
|
|
|
|
|
|
|
|
|
intersection cohomology sheaves -- 7. Generalization of a theorem of Steinberg -- 8. F-thin, F-thick nilpotent orbits -- 9. F-thin nilpotent orbits and affine canonical bases -- 10. Character sheaves on p -- 11. Computation of a Fourier transform -- 12. Another computation of a Fourier transform -- 13. Computation of a Deligne-Fourier transform. |
|
|
|
|
|
| |