|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910814832803321 |
|
|
Autore |
Epstein Charles L |
|
|
Titolo |
Degenerate diffusion operators arising in population biology / / Charles L. Epstein and Rafe Mazzeo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, : Princeton University Press, 2013 |
|
|
|
|
|
|
|
ISBN |
|
1-4008-4718-4 |
1-299-05145-6 |
1-4008-4610-2 |
|
|
|
|
|
|
|
|
Edizione |
[Course Book] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (321 p.) |
|
|
|
|
|
|
Collana |
|
Annals of mathematics studies ; ; number 185 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Elliptic operators |
Markov processes |
Population biology - Mathematical models |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Contents -- Preface -- Chapter 1. Introduction -- Part I. Wright-Fisher Geometry and the Maximum Principle -- Chapter 2. Wright-Fisher Geometry -- Chapter 3. Maximum Principles and Uniqueness Theorems -- Part II. Analysis of Model Problems -- Chapter 4. The Model Solution Operators -- Chapter 5. Degenerate Hölder Spaces -- Chapter 6. Hölder Estimates for the 1-dimensional Model Problems -- Chapter 7. Hölder Estimates for Higher Dimensional Corner Models -- Chapter 8. Hölder Estimates for Euclidean Models -- Chapter 9. Hölder Estimates for General Models -- Part III. Analysis of Generalized Kimura Diffusions -- Chapter 10. Existence of Solutions -- Chapter 11. The Resolvent Operator -- Chapter 12. The Semi-group on ℂ°(P) -- Appendix A: Proofs of Estimates for the Degenerate 1-d Model -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the Martingale problem and therefore the existence of the associated Markov process. |
|
|
|
|