1.

Record Nr.

UNINA9910460278103321

Autore

Muir Jerry R. <1973->

Titolo

Complex analysis : a modern first course in function theory / / Jerry R. Muir, Jr

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , 2015

©2015

ISBN

1-118-70527-0

1-118-95639-7

Descrizione fisica

1 online resource (609 p.)

Disciplina

515

Soggetti

Geometric function theory

Numbers, Complex

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Table of Contents; Title Page; Copyright; Dedication; Preface; Chapter 1: The Complex Numbers; 1.1 Why?; 1.2 The Algebra of Complex Numbers; 1.3 The Geometry of the Complex Plane; 1.4 The Topology of the Complex Plane; 1.5 The Extended Complex Plane; 1.6 Complex Sequences; 1.7 Complex Series; Chapter 2: Complex Functions and Mappings; 2.1 Continuous Functions; 2.2 Uniform Convergence; 2.3 Power Series; 2.4 Elementary Functions and Euler's Formula; 2.5 Continuous Functions as Mappings; 2.6 Linear Fractional Transformations; 2.7 Derivatives; 2.8 The Calculus of Real-Variable Functions

2.9 Contour Integrals Chapter 3: Analytic Functions; 3.1 The Principle of Analyticity; 3.2 Differentiable Functions are Analytic; 3.3 Consequences of Goursat's Theorem; 3.4 The Zeros of Analytic Functions; 3.5 The Open Mapping Theorem and Maximum Principle; 3.6 The Cauchy-Riemann Equations; 3.7 Conformal Mapping and Local Univalence; Chapter 4: Cauchy's Integral Theory; 4.1 The Index of a Closed Contour; 4.2 The Cauchy Integral Formula; 4.3 Cauchy's Theorem; Chapter 5: The Residue Theorem; 5.1 Laurent Series; 5.2 Classification of Singularities; 5.3 Residues; 5.4 Evaluation of Real



Integrals

5.5 The Laplace Transform Chapter 6: Harmonic Functions and Fourier Series; 6.1 Harmonic Functions; 6.2 The Poisson Integral Formula; 6.3 Further Connections to Analytic Functions; 6.4 Fourier Series; Epilogue; Local Uniform Convergence; Harnack's Theorem; Results for Simply Connected Domains; The Riemann Mapping Theorem; Appendix A: Sets and Functions; Sets and Elements; Functions; Appendix B: Topics from Advanced Calculus; The Supremum and Infimum; Uniform Continuity; The Cauchy Product; Leibniz's Rule; References; Index; End User License Agreement

Sommario/riassunto

A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject   Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic fun



2.

Record Nr.

UNINA9910304145703321

Autore

Feldhausen Ingo

Titolo

Methods in prosody : a Romance language perspective / / edited by Ingo Feldhausen, Jan Fliessbach, Maria del Mar Vanrell

Pubbl/distr/stampa

Berlin, : Language Science Press, 2018

Berlin, Germany : , : Language Science Press, , [2018]

©2018

ISBN

3-96110-104-3

Descrizione fisica

1 online resource (xiii, 274 pages) : PDF, digital file(s)

Collana

Studies in laboratory phonology ; ; 6

Disciplina

414.6

Soggetti

Romance languages - Versification

Linguistics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and indexes.

Sommario/riassunto

This book presents a collection of pioneering papers reflecting current methods in prosody research with a focus on Romance languages. The rapid expansion of the field of prosody research in the last decades has given rise to a proliferation of methods that has left little room for the critical assessment of these methods. The aim of this volume is to bridge this gap by embracing original contributions, in which experts in the field assess, reflect, and discuss different methods of data gathering and analysis. The book might thus be of interest to scholars and established researchers as well as to students and young academics who wish to explore the topic of prosody, an expanding and promising area of study.



3.

Record Nr.

UNINA9910814572203321

Autore

Bendel Christopher P. <1969->

Titolo

Cohomology for quantum groups via the geometry of the nullcone / / Christopher P. Bendel [and three others]

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2013

©2013

ISBN

1-4704-1531-3

Descrizione fisica

1 online resource (110 p.)

Collana

Memoirs of the American Mathematical Society, , 1947-6221 ; ; Volume 229, Number 1077

Disciplina

512/.55

Soggetti

Cohomology operations

Algebraic topology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Volume 229, Number 1077 (fourth of 5 numbers)."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

""Contents""; ""Introduction""; ""Chapter 1. Preliminaries and Statement of Results""; ""1.1. Some preliminary notation""; ""1.2. Main results""; ""Chapter 2. Quantum Groups, Actions, and Cohomology""; ""2.1. Listings""; ""2.2. Quantum enveloping algebras""; ""2.3. Connections with algebraic groups""; ""2.4. Root vectors and PBW-basis""; ""2.5. Levi and parabolic subalgebras""; ""2.6. The subalgebra   _{  }(  _{  })""; ""2.7. Adjoint action""; ""2.8. Finite dimensionality of cohomology groups""; ""2.9. Spectral sequences and the Euler characteristic""; ""2.10. Induction functors""

""Chapter 3. Computation of Î?â?€ and   (Î?â?€)""""3.1. Subroot systems defined by weights""; ""3.2. The case of the classical Lie algebras""; ""3.3. The case of the exceptional Lie algebras""; ""3.4. Standardizing Î?â?€""; ""3.5. Resolution of singularities""; ""3.6. Normality of orbit closures""; ""Chapter 4. Combinatorics and the Steinberg Module""; ""4.1. Steinberg weights""; ""4.2. Weights of Î?^{â??}_{  ,  }""; ""4.3. Multiplicity of the Steinberg module""; ""4.4. Proof of Proposition 4.2.1""; ""4.5. The weight   _{  }""; ""4.6. Types   _{  },  _{  },  _{  }""; ""4.7. Type   _{  }""

""4.8. Type   _{  } with    dividing   +1""""4.9. Exceptional Lie algebras""; ""Chapter 5. The Cohomology Algebra   ^{â??}(  _{  }(  ),â??)""; ""5.1. Spectral sequences, I""; ""5.2. Spectral sequences, II""; ""5.3. An



identification theorem""; ""5.4. Spectral sequences, III""; ""5.5. Proof of main result, Theorem 1.2.3, I""; ""5.6. Spectral sequences, IV""; ""5.7. Proof of the main result, Theorem 1.2.3, II""; ""Chapter 6. Finite Generation""; ""6.1. A finite generation result""; ""6.2. Proof of part (a) of Theorem 1.2.4""; ""6.3. Proof of part (b) of Theorem 1.2.4""

""Chapter 7. Comparison with Positive Characteristic""""7.1. The setting""; ""7.2. Assumptions""; ""7.3. Consequences""; ""7.4. Special cases""; ""Chapter 8. Support Varieties over   _{  } for the Modules â??_{  }(  ) and Î?_{  }(  )""; ""8.1. Quantum support varieties""; ""8.2. Lower bounds on the dimensions of support varieties""; ""8.3. Support varieties of â??_{  }(  ): general results""; ""8.4. Support varieties of Î?_{  }(  ) when    is good""; ""8.5. A question of naturality of support varieties""; ""8.6. The Constrictor Method I""; ""8.7. The Constrictor Method II""

""8.8. Support varieties of â??_{  }(  ) when    is bad""""8.9.   â?? when 3\mid  ""; ""8.10.   â?? when 3\mid  ""; ""8.11.   â?? when 3\mid  ""; ""8.12.   â?? when 3\mid  , 5\mid  ""; ""8.13. Support varieties of Î?_{  }(  ) when    is bad""; ""Appendix A.""; ""A.1. Tables I""; ""A.2. Tables II""; ""Bibliography""