1.

Record Nr.

UNINA9910814561003321

Titolo

Affine Bernstein problems and Monge-Ampère equations / / An-Min Li ... [et al.]

Pubbl/distr/stampa

Singapore ; ; Hackensack, N.J., : World Scientific, c2010

ISBN

1-282-76028-9

9786612760280

981-281-417-5

Edizione

[1st ed.]

Descrizione fisica

1 online resource (192 p.)

Altri autori (Persone)

LiAn-Min <1946->

Disciplina

516.36

Soggetti

Affine differential geometry

Monge-Ampère equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 173-177) and index.

Nota di contenuto

Preface; Contents; 1. Basic Tools; 2. Local Equiaffine Hypersurfaces; 3. Local Relative Hypersurfaces; 4. The Theorem of Jorgens-Calabi-Pogorelov; 5. Affine Maximal Hypersurfaces; 6. Hypersurfaces with Constant Affine Mean Curvature; Bibliography; Index

Sommario/riassunto

In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con