|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910813368603321 |
|
|
Autore |
Lin Francesco <1988-> |
|
|
Titolo |
A Morse-Bott approach to monopole Floer homology and the triangulation conjecture / / Francesco Lin |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2018] |
|
©2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (174 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; Volume 255, Number 1221 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Basic setup -- 2.1. The monopole equations -- 2.2. Blowing up the configuration spaces -- 2.3. Completion and slices -- 2.4. Perturbations -- Chapter 3. The analysis of Morse-Bott singularities -- 3.1. Hessians and Morse-Bott singularities -- 3.2. Moduli spaces of trajectories -- 3.3. Transversality -- 3.4. Compactness and finiteness -- 3.5. Gluing -- 3.6. The moduli space on a cobordism -- Chapter 4. Floer homology for Morse-Bott singularities -- 4.1. Homology of smooth manifolds via stratified spaces -- 4.2. Floer homology -- 4.3. Invariance and functoriality -- Chapter 5. \Pin-monopole Floer homology -- 5.1. An involution in the theory -- 5.2. Equivariant perturbations and Morse-Bott transversality -- 5.3. Invariant chains and Floer homology -- 5.4. Some computations -- 5.5. Manolescu's invariant and the Triangulation conjecture -- Bibliography -- Back Cover. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a {\rm spin}^c structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an |
|
|
|
|