1.

Record Nr.

UNINA9910813326203321

Autore

Alexakis Spyros <1978->

Titolo

The decomposition of global conformal invariants / / Spyros Alexakis

Pubbl/distr/stampa

Princeton, : Princeton University Press, 2012

ISBN

1-280-49429-8

9786613589521

1-4008-4272-7

Edizione

[Course Book]

Descrizione fisica

1 online resource (460 p.)

Collana

Annals of mathematics studies ; ; no. 182

Disciplina

518

Soggetti

Conformal invariants

Decomposition (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front matter -- Contents -- Acknowledgments -- 1. Introduction -- 2. An Iterative Decomposition of Global Conformal Invariants: The First Step -- 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition -- 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition -- 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases -- 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I -- 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II -- A. Appendix -- Bibliography -- Index of Authors and Terms -- Index of Symbols

Sommario/riassunto

This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser and Schwimmer asserted that the Riemannian scalar must be a linear combination of three obvious candidates, each of which clearly satisfies the required



property: a local conformal invariant, a divergence of a Riemannian vector field, and the Chern-Gauss-Bonnet integrand. This book provides a proof of this conjecture. The result itself sheds light on the algebraic structure of conformal anomalies, which appear in many settings in theoretical physics. It also clarifies the geometric significance of the renormalized volume of asymptotically hyperbolic Einstein manifolds. The methods introduced here make an interesting connection between algebraic properties of local invariants--such as the classical Riemannian invariants and the more recently studied conformal invariants--and the study of global invariants, in this case conformally invariant integrals. Key tools used to establish this connection include the Fefferman-Graham ambient metric and the author's super divergence formula.