1.

Record Nr.

UNINA9910812838603321

Autore

Bernard Piette

Titolo

VHF/UHF filters and multicouplers : applications of air resonators / / Bernard Piette

Pubbl/distr/stampa

London, : ISTE

Hoboken, N.J., : Wiley, 2010

ISBN

9781118558249

1118558243

9781118620670

1118620674

9781299315464

1299315461

9781118620618

1118620615

Edizione

[1st edition]

Descrizione fisica

1 online resource (309 p.)

Collana

ISTE

Disciplina

621.384/12

Soggetti

Radio filters

Directional couplers

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

English translation of: Multicoupleurs et filtres VHF/UHF, France : Lavoisier, 2007.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Calling to mind and generalities --  HF measurements --  Resonant cavities --  Manufacturing and tuning of cavities --  The bandpass filter --  The combline filter --  Channel multiplexing --  Auxiliary devices --  Directional couplers --  Helical resonators --  Multicouplers --  Utilities --  Miscellaneous.

Sommario/riassunto

This book describes the various devices used in radio communication and broadcasting to achieve high selectivity filtering and coupling. After providing a background in the basics of microwave theory and more detailed material - including a special chapter on precision and errors in measurement - the reader will find detailed descriptions, manufacturing processes, and, for the most useful instances, a number of worked-through formulas, which will allow engineers and technicians to design circuits or components for filtering or coupling



applications. Content is covered in this format across a b

2.

Record Nr.

UNINA9911039317303321

Autore

Lu Junwei

Titolo

Big Data Analysis : High Dimensional Probability, Statistics, Optimization, and Inference / / by Junwei Lu

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783032031617

9783032031600

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (266 pages)

Collana

Mathematics and Statistics Series

Disciplina

005.7

Soggetti

Big data

Statistics

Probabilities

Big Data

Applied Probability

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Part I Foundations of Big Data Analysis -- Chapter 1 Introduction -- Chapter 2 Preliminaries in Probability -- Chapter 3 Preliminaries in Linear Algebra -- Part II High-Dimensional Probability -- Chapter 4 Concentration Inequalities -- Chapter 5 Sub-Exponential Random Variables -- Chapter 6 Maximal Inequality -- Part III High-Dimensional Statistics -- Chapter 7 Ordinary Least Squares -- Chapter 8 Compressive Sensing -- Chapter 9 Restricted Isometry Property -- Chapter 10 Statistical Properties of Lasso -- Chapter 11 Variations of Lasso -- Part IV High-Dimensional Optimization -- Chapter 12 Convexity and Subgradient -- Chapter 13 Gradient Descent -- Chapter 14 Proximal Gradient Descent -- Chapter 15 Mirror Descent and Nesterov’s Smoothing -- Chapter 16 Duality and ADMM -- Part V High-Dimensional Inference -- Chapter 17 High Dimensional Inference -- Chapter 18 Debiased Lasso -- Chapter 19 Multiple Hypotheses -- Chapter 20 False Discovery Rate -- Chapter 21 Knock-Off --



References.

Sommario/riassunto

This book covers the methods and theory of high dimensional probability, statistics, large-scale optimization, and inference. We aim to quickly bring readers to the frontier and interdisciplinary areas of statistics, optimization, probability, and machine learning. This book covers topics in: High dimensional probability, Concentration inequality, Sub-Gaussian random variables, Chernoff bounds, Hoeffding's inequality, Maximal inequalities, High dimensional linear regression, Ordinary least square, Compressed sensing, Lasso, Variations of Lasso including group lasso, fused lasso, adaptive lasso, etc., General high dimensional M- estimators, Variable selection consistency, High dimensional Optimization, Convex geometry, Lagrange duality, Gradient descent, Proximal gradient descent, LARS, ADMM, Mirror descent, Stochastic optimization, Large-Scale Inference, Linear model hypothesis testing, high dimensional inference, Chi-square test, maximal test, and Higher criticism, False discovery rate control.