1.

Record Nr.

UNINA9910812838403321

Autore

Simon Phil

Titolo

Too big to ignore : the business case for big data / / Phil Simon

Pubbl/distr/stampa

Hoboken, N.J., : John Wiley & Sons, c2013

ISBN

1-119-20403-8

1-118-64186-8

1-299-31571-2

1-118-64210-4

Edizione

[1st ed.]

Descrizione fisica

257p

Collana

Wiley & SAS business series

Disciplina

006.3/12

Soggetti

Business - Data processing

Data mining

Database management

Big data

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Too Big to Ignore -- Contents -- List of Tables and Figures -- Preface -- Acknowledgments -- Introduction: This Ain't Your Father's Data -- Better Car Insurance through Data -- Potholes and General Road Hazards -- Recruiting and Retention -- How Big Is Big? The Size of Big Data -- Why Now? Explaining the Big Data Revolution -- The Always-On Consumer -- The Plummeting of Technology Costs -- The Rise of Data Science -- Google and Infonomics -- The Platform Economy -- The 11/12 Watershed: Sandy and Politics -- Social Media and Other Factors -- Central Thesis of Book -- Plan of Attack -- Who Should Read This Book? -- Summary -- Notes -- Chapter 1 Data 101 and the Data Deluge -- The Beginnings: Structured Data -- Structure This! Web 2.0 and the Arrival of Big Data -- Unstructured Data -- Semi-Structured Data -- Metadata -- The Composition of Data: Then and Now -- The Current State of the Data Union -- The Enterprise and the Brave New Big Data World -- The Data Disconnect -- Big Tools and Big Opportunities -- Summary -- Notes -- Chapter 2 Demystifying Big Data -- Characteristics of Big Data -- Big Data Is Already Here -- Big Data Is Extremely Fragmented -- Big Data Is Not an Elixir -- Small Data



Extends Big Data -- Big Data Is a Complement, Not a Substitute -- Big Data Can Yield Better Predictions -- Big Data Giveth-and Big Data Taketh Away -- Big Data Is Neither Omniscient Nor Precise -- Big Data Is Generally Wide, Not Long -- Big Data Is Dynamic and Largely Unpredictable -- Big Data Is Largely Consumer Driven -- Big Data Is External and "Unmanageable" in the Traditional Sense -- Big Data Is Inherently Incomplete -- Big Overlap: Big Data, Business Intelligence, and Data Mining -- Big Data Is Democratic -- The Anti-Definition: What Big Data Is Not -- Summary -- Notes -- Chapter 3 The Elements of Persuasion: Big Data Techniques.

The Big Overview -- Statistical Techniques and Methods -- Regression -- A/B Testing -- Data Visualization -- Heat Maps -- Time Series Analysis -- Automation -- Machine Learning and Intelligence -- Sensors and Nanotechnology -- RFID and NFC -- Semantics -- Natural Language Processing -- Text Analytics -- Sentiment Analysis -- Big Data and the Gang of Four -- Predictive Analytics -- Two Key Laws of Big Data -- Collaborative Filtering -- Limitations of Big Data -- Summary -- Notes -- Chapter 4 Big Data Solutions -- Projects, Applications, and Platforms -- Hadoop -- Other Data Storage Solutions -- NoSQL Databases -- NewSQL -- Columnar Databases -- Google: Following the Amazon Model? -- Websites, Start-Ups, and Web Services -- Kaggle -- Other Start-Ups -- Hardware Considerations -- The Art and Science of Predictive Analytics -- Summary -- Notes -- Chapter 5 Case Studies: The Big Rewards of Big Data -- Quantcast: A Small Big Data Company -- Steps: A Big Evolution -- Buy Your Audience -- Results -- Lessons -- Explorys: The Human Case for Big Data -- Better Healthcare through Hadoop -- Steps -- Results -- Lessons -- NASA: How Contests, Gamification, and OpenInnovation Enable Big Data -- Background -- Examples -- A Sample Challenge -- Lessons -- Summary -- Notes -- Chapter 6 Taking the Big Plunge -- Before Starting -- Infonomics Revisited -- Big Data Tools Don't Cleanse Bad Data -- The Big Question: Is the Organization Ready? -- Think Free Speech, Not Free Beer -- Starting the Journey -- Start Relatively Small and Organically -- First Aim for Little Victories -- New Employees and New Skills -- Experiment with Big Data Solutions -- Gradually Gain Acceptance throughout the Organization -- Open Your Mind -- Let the Data Model Evolve -- Tap into Existing Communities -- Realize That Big Data Is Iterative -- Avoiding the Big Pitfalls -- Big Data Is a Binary.

Big Data Is an Initiative -- Big Data Is a Side Project -- There Is a Big Data Checklist -- IT Owns Big Data -- Remember the Goal -- Summary -- Notes -- Chapter 7 Big Data: Big Issues and Big Problems -- Privacy: Big Data = Big Brother? -- Big Security Concerns -- Big, Pragmatic Issues -- Big Consumer Fatigue -- Rise of the Machines: Big Employee Resistance -- Employee Revolt and the Big Paradox -- Summary -- Notes -- Chapter 8 Looking Forward: The Future of Big Data -- Predicting Pregnancy -- Big Data Is Here to Stay -- Big Data Will Evolve -- Projects and Movements -- The Vibrant Data Project -- The Data Liberation Front -- Open Data Foundation -- Big Data Will Only Get Bigger . . . and Smarter -- The Internet of Things: The Move from Active toPassive Data Generation -- Hi-Tech Oreos -- Hi-Tech Thermostats -- Smart Food and Smart Music -- Big Data: No Longer a Big Luxury -- Stasis Is Not an Option -- Summary -- Notes -- Final Thoughts -- Spreading the Big Data Gospel -- Notes -- Selected Bibliography -- About the Author -- index.