1.

Record Nr.

UNINA9910812750703321

Autore

Banagl Markus <1971->

Titolo

Extending intersection homology type invariants to non-Witt spaces / / Markus Banagl

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , [2002]

©2002

ISBN

1-4704-0358-7

Descrizione fisica

1 online resource (101 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 760

Disciplina

510 s

514/.23

Soggetti

Intersection homology theory

Duality theory (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (page 83).

Nota di contenuto

""Contents""; ""Chapter 1. Introduction""; ""1. History""; ""2. Motivation""; ""3. The Main Result: A Postnikov System of Lagrangian Structures""; ""4. Consequences: Characteristic Classes""; ""5. Ordered Resolutions � A Model Construction""; ""6. Applications""; ""7. Further Developments""; ""8. Sign Questions""; ""9. Some Remarks on Coefficients""; ""10. Acknowledgments""; ""11. Notation""; ""Chapter 2. The Algebraic Framework""; ""1. The Lifting Obstruction""; ""2. The Category of Self�Dual Sheaves Compatible with IH""; ""3. Lagrangian Structures""

""4. Extracting Lagrangian Structures from Selfâ€?Dual Sheaves""""5. Lagrangian Structures as Building Blocks for Selfâ€?Dual Sheaves""; ""6. A Postnikov system""; ""Chapter 3. Ordered Resolutions""; ""1. The Purpose of the Construction""; ""2. Definitions""; ""3. The PL Construction""; ""4. Inductive Singularization of a Manifold""; ""Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)]""; ""1. The Closed Objects""; ""2. The Admissible Cobordisms""; ""3. The Cobordism Invariance of Ï?""; ""4. Relation to Witt Space Cobordism""; ""Chapter 5. Lagrangian Structures and Ordered Resolutions""

""1. Statement of Result""""2. The inductive set�up""; ""3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)]""; ""4.



Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ""; ""5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is self�dual""; ""6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)]""; ""7. The definition of L[sup(.)](X[sup((m+1))])""; ""Appendix A. On Signs""; ""Bibliography""