|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910812510203321 |
|
|
Autore |
Hirschfeld J. W. P (James William Peter), <1940-> |
|
|
Titolo |
Algebraic curves over a finite field / / J. W. P. Hirschfeld, G. Korchmaros, F. Torres |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, New Jersey : , : Princeton University Press, , 2008 |
|
©2008 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[Course Book] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (717 p.) |
|
|
|
|
|
|
Collana |
|
Princeton Series in Applied Mathematics |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Curves, Algebraic |
Finite fields (Algebra) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Contents -- Preface -- PART 1. General theory of curves -- Chapter One. Fundamental ideas -- Chapter Two. Elimination theory -- Chapter Three. Singular points and intersections -- Chapter Four. Branches and parametrisation -- Chapter Five. The function field of a curve -- Chapter Six. Linear series and the Riemann-Roch Theorem -- Chapter Seven. Algebraic curves in higher-dimensional spaces -- PART 2. Curves over a finite field -- Chapter Eight. Rational points and places over a finite field -- Chapter Nine. Zeta functions and curves with many rational points -- PART 3. Further developments -- Chapter Ten. Maximal and optimal curves -- Chapter Eleven. Automorphisms of an algebraic curve -- Chapter Twelve. Some families of algebraic curves -- Chapter Thirteen. Applications: codes and arcs -- Appendix A. Background on field theory and group theory -- Appendix B. Notation -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the |
|
|
|
|