1.

Record Nr.

UNINA9910812439203321

Autore

Chueshov Igor <1951-2016, >

Titolo

Long-time behavior of second order evolution equations with nonlinear damping / / Igor Chueshov, Irena Lasiecka

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , [2008]

©2008

ISBN

1-4704-0518-0

Descrizione fisica

1 online resource (200 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 912

Disciplina

514/.74

Soggetti

Attractors (Mathematics)

Evolution equations, Nonlinear

Differentiable dynamical systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Volume 195, number 912 (third of 4 numbers )."

"September 2008."

Nota di bibliografia

Includes bibliographical references (pages 179-182) and index.

Nota di contenuto

""Contents""; ""Preface""; ""Chapter 1. Introduction""; ""1.1. Description of the problem studied""; ""1.2. The model and basic assumption""; ""1.3. Well-posedness""; ""Chapter 2. Abstract results on global attractors""; ""2.1. Criteria for asymptotic smoothness of dynamical systems""; ""2.2. Criteria for finite dimensionality of attractors""; ""2.3. Exponentially attracting positively invariant sets""; ""2.4. Gradient systems""; ""Chapter 3. Existence of compact global attractors for evolutions of the second order in time""; ""3.1. Ultimate dissipativity""

""3.2. Asymptotic smoothness: the main assumption""""3.3. Global attractors in subcritical case""; ""3.4. Global attractors in critical case""; ""Chapter 4. Properties of global attractors for evolutions of the second order in time""; ""4.1. Finite dimensionality of attractors""; ""4.2. Regularity of elements from attractors""; ""4.3. Rate of stabilization to equilibria""; ""4.4. Determining functionals""; ""4.5. Exponential fractal attractors (inertial sets)""; ""Chapter 5. Semilinear wave equation with a nonlinear dissipation""; ""5.1. The model""; ""5.2. Main results""; ""5.3. Proofs""

""Chapter 6. Von Karman evolutions with a nonlinear dissipation""""6.1. The model""; ""6.2. Properties of von Karman bracket""; ""6.3. Abstract



setting of the model""; ""6.4. Model with rotational forces: α > 0""; ""6.5. Non-rotational case α = 0""; ""Chapter 7. Other models from continuum mechanics""; ""7.1. Berger's plate model""; ""7.2. Mindlin-Timoshenko plates and beams""; ""7.3. Kirchhoff limit in Mindlin-Timoshenko plates and beams""; ""7.4. Systems with strong damping""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""

""N""""O""; ""P""; ""R""; ""S""; ""U""