1.

Record Nr.

UNINA9910811904003321

Autore

Zhao Xiao-Ling

Titolo

FRP-strengthened metallic structures / / Xiao-Ling Zhao

Pubbl/distr/stampa

Boca Raton, : CRC Press, 2014

ISBN

1-138-07433-0

0-429-20743-3

0-415-46821-3

Edizione

[1st ed.]

Descrizione fisica

1 online resource (280 p.)

Collana

Spon research FRP-strengthened metallic structures

Classificazione

TEC009020TEC021000TEC063000

Disciplina

624.1/8923

Soggetti

Building, Iron and steel - Materials

Buildings - Maintenance - Materials

Fiber-reinforced plastics

Adhesives

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Front Cover; Contents; Preface; Acknowledgments; Notation; Author; Chapter 1 - Introduction; Chapter 2 - FRP composites and metals; Chapter 3 - Behaviour of the bond between FRP and metal; Chapter 4 - Flexural strengthening of steel and steel-concrete composite beams with FRP laminates; Chapter 5 - Strengthening of compression members; Chapter 6 - Strengthening of web crippling of beams subject to end bearing forces; Chapter 7 - Enhancement of fatigue performance; Back Cover

Sommario/riassunto

"Preface A significant amount of metallic structures are aging. The conventional method of repairing or strengthening aging metallic structures often involves bulky and heavy plates that are difficult to fix and prone to corrosion, as well as to their own fatigue. Fibre-reinforced polymer (FRP) has great potential in strengthening metallic structures, such as bridges, buildings, offshore platforms, pipelines, and crane structures. The existing knowledge of the carbon fibre-reinforced polymer (CFRP)- concrete composite system may not be applicable to the CFRP-steel system because of the distinct difference between the debonding mechanism of the former and latter, alongside the unique failure modes for steel members and connections. Several design and



practice guides on FRP strengthening of metallic structures were published in the UK, United States, Italy, and Japan. However, the following topics are not covered in detail: bond behaviour between FRP and steel, strengthening of compression members, strengthening of steel tubular members, strengthening against web crippling of steel sections, and strengthening for enhanced fatigue and seismic performance. The present book not only contains descriptions and explanations of basic concepts and summarises the research performed to date on the FRP strengthening of metallic structures, but also provides some design recommendations. Comprehensive, topical references appear throughout the book. It is suitable for structural engineers, researchers, and university students who are interested in the FRP strengthening technique"--