|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910811789203321 |
|
|
Autore |
Li Jun-Pu |
|
|
Titolo |
Radial Basis Function Methods for Large-Scale Wave Propagation |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
UAE : , : Bentham Science Publishers, , 2021 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (183 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- Acknowledgements -- 04-Chapter-01 -- 05-Chapter-02 -- 06-Chapter-03 -- 07-Chapter-04 -- 08-Chapter-05 -- 09-Chapter-06 -- 10-Chapter-07 -- 11-Chapter-08 -- 12-Chapter-09 -- 13-Appendix -- 14-Nomenclature -- Subject Index -- Back Cover. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book details the development of techniques and ideas from the radial basis function. It begins with a mathematical description of the basic concept of radial function method with chapters progressively delving into the derivation and construction of radial basis functions for large-scale wave propagation problems including singularity problems, high-frequency wave problems and large-scale computation problems. This reference, written by experts in numerical analysis, demonstrates how the functions arise naturally in mathematical analyses of structures responding to external loads. Readers are also equipped with mathematical knowledge about the radial basis function for understanding key algorithms required for practical solutions. |
|
|
|
|
|
|
|