1.

Record Nr.

UNINA9910811342503321

Autore

Peelo David F

Titolo

Current interruption transients calculation / / David F. Peelo

Pubbl/distr/stampa

West Sussex, England : , : John Wiley & Sons, , 2014

©2014

ISBN

1-118-70721-4

1-118-70722-2

1-118-70719-2

Descrizione fisica

1 online resource (248 p.)

Disciplina

621.319/21

Soggetti

Transients (Electricity) - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Current Interruption Transients Calculation; Contents; Preface; 1 Introduction; 1.1 Background; 1.2 Short-Circuit Rating Basis for High-Voltage Circuit Breakers; 1.3 Current Interruption Terminology; Bibliography; 2 RLC Circuits; 2.1 General; 2.2 Series RLC Circuit with Step Voltage Injection; 2.3 Source-Free Series RLC Circuit with Precharged Capacitor; 2.4 Source-Free Parallel RLC Circuit with Precharged Capacitor; 2.5 Parallel RLC Circuit with Ramp Current Injection; 2.6 Alternative Equations; 2.7 Travelling Wave Basics; 2.8 Summary; Bibliography; 3 Pole Factor Calculation; 3.1 General

3.2 Pole Factors: Effectively Earthed Systems3.3 Pole Factors: Non-Effectively Earthed Systems; 3.4 Alternative Pole Factor Calculation Method; 3.5 Three-Phase Test Circuit Arrangement; 3.6 Summary; Bibliography; 4 Terminal Faults; 4.1 General Considerations; 4.2 Standard TRV Derivation; 4.3 Effect of Added Capacitance; 4.4 Effect of Added Resistance; 4.5 Effect of Added Inductance; 4.6 Out-of-Phase Switching; 4.7 Asymmetrical Currents; 4.8 Double Earth Faults; 4.9 Summary; Bibliography; 5 Short-Line Faults; 5.1 General; 5.2 Line-Side Voltage Calculation; 5.3 Effect of Added Capacitance

5.4 DiscussionBibliography; 6 Inductive Load Switching; 6.1 General; 6.2 General Shunt Reactor Switching Case; 6.3 Shunt Reactors with Isolated Neutrals; 6.4 Shunt Reactors with Neutral Reactor Earthed



Neutrals; 6.5 Shunt Reactors with Earthed Neutrals; 6.6 Re-Ignitions; 6.7 Unloaded Transformer Switching; 6.8 Discussion; 6.9 Summary; Bibliography; 7 Capacitive Load Switching; 7.1 General; 7.2 Shunt Capacitor Banks; 7.2.1 Energization; 7.2.2 De-Energization; 7.2.3 Outrush; 7.3 Transmission Lines; 7.4 Cables; 7.5 Summary; Bibliography; 8 Circuit Breaker Type Testing; 8.1 Introduction

8.2 Circuit Breaker Interrupting Time8.3 Inherent Transient Recovery Voltages; 8.4 Inductive Load Switching; 8.5 Capacitive Current Switching; Bibliography; Appendix A: Differential Equations; Bibliography; Appendix B: Principle of Duality; Appendix C: Useful Formulae; Appendix D: Euler's Formula; Bibliography; Appendix E: Asymmetrical Current-Calculating Areas Under Curves; Appendix F: Shunt Reactor Switching: First-Pole-to-Clear Circuit Representation; Appendix G: Special Case: Interrupting Small Capacitive Currents; Bibliography; Appendix H: Evolution of Transient Recovery Voltages

H.1 IntroductionH.2 TRVs: Terminal Faults; H.3 Terminal Fault TRV Standardization; H.4 Short-Line Fault; H.5 Inductive and Capacitive Load Current Switching; H.6 Terminal Fault TRV Calculation; H.6.1 Pole Factor Calculation; H.6.2 Transient Calculation; Bibliography; Index

Sommario/riassunto

Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits.  This book provides an original, detailed and practical description of current interruption