| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910811300903321 |
|
|
Autore |
Morgan Emily |
|
|
Titolo |
Picture-perfect lecciones de ciencia, segunda edicion ampliada : como utilizar manuales infantiles para guiar la investigacion, 3-6 / / Emily Morgan, Karen Ansberry |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Arlington, Virginia : , : National Science Teachers Association, , [2020] |
|
©2020 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (187 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Front Cover -- Contenidos -- Reconocimientos -- Acerca de las Autoras -- Medidas de seguridad para las actividades de ciencia -- 6 - Sabuesos de la tierra -- 7- ¡Dale un nombre a esa concha marina! -- 8 - El arroz es vida -- 9 - ¿Qué pasa? -- 10 - Buhos misteriosos -- 11 - Encuentros cercanos del tipo simbiótico -- 12 - Los obstáculos de la tortuga -- 13 - ¡Derrame de petroleo! -- 14 - Ovejas en un vehículo todo terreno -- 15 - Los sonidos de la ciencia -- 16 - Cambios químico en el café -- 17 - La luna cambiante -- 18 - El día y la noche -- 19 - El Gran Cañón -- 20 - Propuestas de ideas: De la idea al invento -- 21 - ¡Insectos! -- 22 - Baterías incluidas -- 23 - Los secretos de volar -- 24 - Por el resumidero -- 25 - Si construyo un auto -- Untitled. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910438030503321 |
|
|
Autore |
Kharin Yuriy |
|
|
Titolo |
Robustness in Statistical Forecasting / / by Yuriy Kharin |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2013.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (369 p.) |
|
|
|
|
|
|
Disciplina |
|
330.015195 |
519 |
519.2 |
519.5 |
|
|
|
|
|
|
|
|
Soggetti |
|
Statistics |
Probabilities |
Engineering mathematics |
Engineering - Data processing |
Statistical Theory and Methods |
Probability Theory |
Statistics in Business, Management, Economics, Finance, Insurance |
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences |
Mathematical and Computational Engineering Applications |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- Symbols and Abbreviations -- Introduction -- A Decision-Theoretic Approach to Forecasting -- Time Series Models of Statistical Forecasting -- Performance and Robustness Characteristics in Statistical Forecasting -- Forecasting under Regression Models of Time Series -- Robustness of Time Series Forecasting Based on Regression Models -- Optimality and Robustness of ARIMA Forecasting -- Optimality and Robustness of Vector Autoregression Forecasting under Missing Values -- Robustness of Multivariate Time Series Forecasting Based on Systems of Simultaneous Equations -- Forecasting of Discrete Time Series -- Index. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Traditional procedures in the statistical forecasting of time series, which are proved to be optimal under the hypothetical model, are often not robust under relatively small distortions (misspecification, outliers, missing values, etc.), leading to actual forecast risks (mean square errors of prediction) that are much higher than the theoretical values. This monograph fills a gap in the literature on robustness in statistical forecasting, offering solutions to the following topical problems: - developing mathematical models and descriptions of typical distortions in applied forecasting problems; - evaluating the robustness for traditional forecasting procedures under distortions; - obtaining the maximal distortion levels that allow the “safe” use of the traditional forecasting algorithms; - creating new robust forecasting procedures to arrive at risks that are less sensitive to definite distortion types. . |
|
|
|
|
|
|
|
| |