| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910811216403321 |
|
|
Titolo |
Chaos, CNN, memristors and beyond : a festschrift for Leon Chua / / editors, Andrew Adamatzky, University of the West of England, UK, Guanrong Chen, City University of Hong Kong, PR China |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore ; ; London, : World Scientific, 2013 |
|
New Jersey : , : World Scientific, , [2013] |
|
�2013 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-299-28131-1 |
981-4434-80-9 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xii, 549 pages) : illustrations (some color) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Neural networks (Computer science) |
Memristors |
Chaotic behavior in systems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; CONTENTS; Part I. Cellular Nonlinear Networks, Nonlinear Circuits and Cellular Automata; 1. Genealogy of Chua's Circuit Peter Kennedy; 1. Introduction; 2. History; 3. Five-element Chua's Circuit; 3.1. Discrete circuit realization; 3.2. Piecewise-linear Chua diode; 3.2.1. Op amp-based negative impedance converters; 3.2.2. Current-mode negative impedance converters; 3.2.3. Transistor-based negative impedance converter and diodes; 3.3. Cubic nonlinearity; 3.4. Asymmetric nonlinearity; 3.5. Inductor; 3.5.1. Gyrator-based inductor; 3.6. Integrated circuit realization |
4. Four-element Chua's Circuit5. Three-element Chaotic Circuit; 6. Summary; References; 2. Impasse Points, Mutators, and Other Chua Creations Hyongsuk Kim; 1. Introduction; 2. Impasse Points; 3. Mutators; 3.1. Realization of mutators; 3.2. Experimental verification of mutators; 4. Other Chua Creations; Acknowledgment; References; 3. Chua's Lagrangian Circuit Elements Orla Feely; 1. Introduction; 2. Chua's Presentation of Lagrangian Circuit Elements; 3. Summary; References; 4. From CNN Dynamics to Cellular Wave Computers Tamas |
|
|
|
|
|
|
|
|
|
|
|
Roska; 1. Introduction |
2. Using Cellular Dynamics and Nonlinear Dynamical Circuits for Computation - A Prehistory3. The Standard CNN (Cellular Neural/Nonlinear Network) as the Practically Feasible Prototype Solution and Related Stability Issues; 4. Inventing the Stored Programmable Spatial-temporal Computer: The CNN Universal Machine (CNN-UM) and the Cellular Wave Computer; 5. Making the First Silicon Visual Microprocessors and its Computational Infrastructure - Other Physical Implementations; 6. Biological Relevance and Bio-inspiration |
7. Some Fundamental Theorems - More than PDE, Equivalence to Fully-connectedness, Analytic Theory of CA, Godel Incompleteness8. Prototype Spatial-temporal CNN Algorithms and Novel Applications; 9. Physical and Virtual Cellular Machines with Kilo- and Mega-processor Chips and Related Topographic Algorithms; 10. Conclusions and Major New Challenges; Acknowledgment; References; 5. Contributions of CNN to Bio-robotics and Brain Science Paolo Arena and Luca Patane; 1. Introduction; 2. CNN-based CPGs for Locomotion Control in Bio-robots; 2.1. Basis of locomotion |
2.2. The CNN neuron model for CPG: a slow-fast controllable limit cycle2.3. CPG in a reaction-diffusion CNN structure; 2.4. CPG in amulti-template-CNN; 3. A Brain for the Body:A CNN-based Spatio-temporal Approach; 3.1. Control architecture; 3.1.1. Sensory block; 3.1.2. Basic behaviors; 3.1.3. Representation layer; 3.1.4. Preprocessing block; 3.1.5. Perceptual core; 3.1.6. Selection network; 3.1.7. Motivation layer and learning process; 3.2. Simulation results; 3.2.1. Learning phase; 3.2.2. Testing phase; 3.2.3. Experimental results; 4. A Note on Winnerless Competition in CNNs; 5. Conclusions |
Acknowledgement |
|
|
|
|
|
|
Sommario/riassunto |
|
This invaluable book is a unique collection of tributes to outstanding discoveries pioneered by Leon Chua in nonlinear circuits, cellular neural networks, and chaos. It is comprised of three parts. The first - cellular nonlinear networks, nonlinear circuits and cellular automata - deals with Chua's Lagrangian circuits, cellular wave computers, bio-inspired robotics and neuro-morphic architectures, toroidal chaos, synaptic cellular automata, history of Chua's circuits, cardiac arrhythmias, local activity principle, symmetry breaking and complexity, bifurcation trees, and Chua's views on nonline |
|
|
|
|
|
|
|
| |