|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910810766203321 |
|
|
Autore |
Degtyarev A (Alexander), <1962-> |
|
|
Titolo |
Topology of algebraic curves : an approach via dessins d'enfants / / Alex Degtyarev |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Boston, : De Gruyter, c2012 |
|
|
|
|
|
|
|
ISBN |
|
9786613940186 |
1-283-62773-6 |
3-11-220412-3 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (412 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter studies in mathematics, , 0179-0986 ; ; 44 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Curves, Plane |
Topological degree |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [369]-378) and indexes. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Preface -- Contents -- Part I. Skeletons and dessins -- Chapter 1. Graphs -- Chapter 2. The groups Γ and B3 -- Chapter 3. Trigonal curves and elliptic surfaces -- Chapter 4. Dessins -- Chapter 5. The braid monodromy -- Part II. Applications -- Chapter 6. The metabelian invariants -- Chapter 7. A few simple computations -- Chapter 8. Fundamental groups of plane sextics -- Chapter 9. The transcendental lattice -- Chapter 10. Monodromy factorizations -- Appendices -- Appendix A. An algebraic complement -- Appendix B. Bigonal curves in Σd -- Appendix C. Computer implementations -- Appendix D. Definitions and notation -- Bibliography -- Index of figures -- Index of tables -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This monograph summarizes and extends a number of results on the topology of trigonal curves in geometrically ruled surfaces. An emphasis is given to various applications of the theory to a few related areas, most notably singular plane curves of small degree, elliptic surfaces, and Lefschetz fibrations (both complex and real), and Hurwitz equivalence of braid monodromy factorizations. The approach relies on a close relation between trigonal curves/elliptic surfaces, a certain class of ribbon graphs, and subgroups of the modular group, which provides a combinatorial framework for the study of geometric objects. A brief |
|
|
|
|