1.

Record Nr.

UNINA9910810762803321

Titolo

Event-based neuromorphic systems / / edited by Shih-Chii S. Liu [and three other]

Pubbl/distr/stampa

Chichester, West Sussex, United Kindgom : , : John Wiley & Sons Inc., , 2015

ISBN

1-118-92762-1

1-118-92760-5

1-118-92763-X

Edizione

[1st edition]

Descrizione fisica

1 online resource (442 p.)

Classificazione

TEC008010

Disciplina

660.6/3

Soggetti

Neuromorphics

Discrete-time systems

Neural networks (Neurobiology) - Simulation methods

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

EVENT-BASED NEUROMORPHIC SYSTEMS; Contents; List of Contributors; Foreword; Acknowledgments; List of Abbreviations and Acronyms; 1 Introduction; 1.1 Origins and Historical Context; 1.2 Building Useful Neuromorphic Systems; References; Part I Understanding Neuromorphic Systems; 2 Communication; 2.1 Introduction; 2.2 Address-Event Representation; 2.2.1 AER Encoders; 2.2.2 Arbitration Mechanisms; 2.2.3 Encoding Mechanisms; 2.2.4 Multiple AER Endpoints; 2.2.5 Address Mapping; 2.2.6 Routing; 2.3 Considerations for AER Link Design; 2.3.1 Trade-off: Dynamic or Static Allocation

2.3.2 Trade-off: Arbitered Access or Collisions?2.3.3 Trade-off: Queueing versus Dropping Spikes; 2.3.4 Predicting Throughput Requirements; 2.3.5 Design Trade-offs; 2.4 The Evolution of AER Links; 2.4.1 Single Sender, Single Receiver; 2.4.2 Multiple Senders, Multiple Receivers; 2.4.3 Parallel Signal Protocol; 2.4.4 Word-Serial Addressing; 2.4.5 Serial Differential Signaling; 2.5 Discussion; References; 3 Silicon Retinas; 3.1 Introduction; 3.2 Biological Retinas; 3.3 Silicon Retinas with Serial Analog Output; 3.4 Asynchronous Event-Based Pixel Output Versus Synchronous Frames; 3.5 AER Retinas



3.5.1 Dynamic Vision Sensor3.5.2 Asynchronous Time-Based Image Sensor; 3.5.3 Asynchronous Parvo-Magno Retina Model; 3.5.4 Event-Based Intensity-Coding Imagers (Octopus and TTFS); 3.5.5 Spatial Contrast and Orientation Vision Sensor (VISe); 3.6 Silicon Retina Pixels; 3.6.1 DVS Pixel; 3.6.2 ATIS Pixel; 3.6.3 VISe Pixel; 3.6.4 Octopus Pixel; 3.7 New Specifications for Silicon Retinas; 3.7.1 DVS Response Uniformity; 3.7.2 DVS Background Activity; 3.7.3 DVS Dynamic Range; 3.7.4 DVS Latency and Jitter; 3.8 Discussion; References; 4 Silicon Cochleas; 4.1 Introduction; 4.2 Cochlea Architectures

4.2.1 Cascaded 1D4.2.2 Basic 1D Silicon Cochlea; 4.2.3 2D Architecture; 4.2.4 The Resistive (Conductive) Network; 4.2.5 The BM Resonators; 4.2.6 The 2D Silicon Cochlea Model; 4.2.7 Adding the Active Nonlinear Behavior of the OHCs; 4.3 Spike-Based Cochleas; 4.3.1 Q-control of AEREAR2 Filters; 4.3.2 Applications: Spike-Based Auditory Processing; 4.4 Tree Diagram; 4.5 Discussion; References; 5 Locomotion Motor Control; 5.1 Introduction; 5.1.1 Determining Functional Biological Elements; 5.1.2 Rhythmic Motor Patterns; 5.2 Modeling Neural Circuits in Locomotor Control

5.2.1 Describing Locomotor Behavior5.2.2 Fictive Analysis; 5.2.3 Connection Models; 5.2.4 Basic CPG Construction; 5.2.5 Neuromorphic Architectures; 5.3 Neuromorphic CPGs at Work; 5.3.1 A Neuroprosthesis: Control of Locomotion in Vivo; 5.3.2 Walking Robots; 5.3.3 Modeling Intersegmental Coordination; 5.4 Discussion; References; 6 Learning in Neuromorphic Systems; 6.1 Introduction: Synaptic Connections, Memory, and Learning; 6.2 Retaining Memories in Neuromorphic Hardware; 6.2.1 The Problem of Memory Maintenance: Intuition; 6.2.2 The Problem of Memory Maintenance: Quantitative Analysis

6.2.3 Solving the Problem of Memory Maintenance

Sommario/riassunto

"Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems.Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence.This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems.Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges"--



2.

Record Nr.

UNINA9910437803203321

Autore

Mizuse Kenta

Titolo

Spectroscopic investigations of hydrogen bond network structures in water clusters / / Kenta Mizuse

Pubbl/distr/stampa

Tokyo ; ; New York, : Springer, c2013

ISBN

4-431-54312-0

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (185 p.)

Collana

Springer theses, , 2190-5053

Disciplina

541.2/24

Soggetti

Hydrogen bonding

Water - Spectra

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Doctoral thesis accepted by Tohoku University, Sendai, Japan."--t.p.

Nota di contenuto

General Introduction -- Infrared spectroscopy of chromophore-labeled water clusters phenol-(H2O)n (n < ~50) -- Infrared pectroscopy of large protonated water clusters H+(H2O)n (n ≤ 221) -- Tuning of the Internal Energy and Isomer Distribution in Protonated Water Clusters H+(H2O)n (n ≤ 50): Towards a more detailed understanding of structures and dynamics -- Infrared spectroscopy of water cluster radical cations (H2O)n+ (n ≤ 11) -- Conclusions and future work.

Sommario/riassunto

The properties and nature of water clusters studied with novel spectroscopic approaches are presented in this thesis. Following a general introduction on the chemistry of water and water clusters, detailed descriptions of the experiments and analyses are given. All the experimental results, including first size-selective spectra of large clusters consisting of 200 water molecules, are presented with corresponding analyses. Hitherto unidentified hydrogen bond network structures, dynamics, and reactivity of various water clusters have been characterized at the molecular level. The main targets of this book are physical chemists and chemical physicists who are interested in water chemistry or cluster chemistry.