1.

Record Nr.

UNINA9910810343203321

Titolo

Atomic force microscopy in nanobiology / / edited by Kunio Takeyasu

Pubbl/distr/stampa

Boca Raton, FL : , : CRC Press : , : Pan Stanford Publishing, , [2014]

©2014

ISBN

0-429-07421-2

981-4411-58-2

Descrizione fisica

1 online resource (444 p.)

Disciplina

574.0222

Soggetti

Ultrastructure (Biology)

Atomic force microscopy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Front Cover; Contents; Contents; Preface; Preface; Chapter 1 A Short Story of AFM in Biology; Chapter 2 Protocols for Specimen and Substrate Preparation and Data Correction Methods; Chapter 3 Chemical Modification of AFM Probes and Coupling with Biomolecules; Chapter 4 Single- Molecule Dissection and Isolation Based on AFM Nanomanipulation; Chapter 5 Structural Biology with Cryo- AFMs and Computational Modeling; Chapter 6 High- Resolution Imaging of Biological Molecules by Frequency Modulation Atomic Force Microscopy; Chapter 7 Development of Recognition Imaging: From Molecules to Cells

Chapter 8 Development of High- Speed AFM and Its Biological ApplicationsChapter 9 Real- Time AFMs Combined with Inverted Optical Microscopes forWet Cell/ Tissue Imaging; Chapter 10 Studying the Cytoskeleton by Atomic Force Microscopy; Chapter 11 Determination of the Architecture of Multisubunit Proteins Using AFM Imaging; Chapter 12 Capturing Membrane Proteins atWork; Chapter 13 Enzymes and DNA: Molecular Motors in Action; Chapter 14 Genome- Folding Mechanisms in the Three Domains of Life Revealed by AFM; Chapter 15 Membrane Dynamics: Lipid- Protein Interactions Studied by AFM

Chapter 16 Nanosurgery and Cytoskeletal Mechanics of a Single



CellChapter 17 Functional Investigations on Nuclear Pores with Atomic Force Microscopy; Chapter 18 Mechanotransduction: Probing Its Mechanisms at the Nanoscale Using the Atomic Force Microscope; Back Cover

Sommario/riassunto

Recent developments in atomic force microscopy (AFM) have been accomplished through various technical and instrumental innovations, including high-resolution and recognition imaging technology under physiological conditions, fast-scanning AFM, and general methods for cantilever modification and force measurement. All these techniques are now highly powerful not only in material sciences but also in basic biological sciences. There are many nanotechnology books that focus on materials, instruments, and applications in engineering and medicine, but only a few of them are directed toward basic