|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910809760103321 |
|
|
Autore |
Fenchel W (Werner), <1905-> |
|
|
Titolo |
Discontinuous groups of isometries in the hyperbolic plane / / Werner Fenchel, Jakob Nielsen ; edited by Asmus L. Schmidt |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : Walter de Gruyter, 2003 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (388 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter studies in mathematics ; ; 29 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
NielsenJakob <1890-1959.> |
SchmidtAsmus L |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Discontinuous groups |
Isometrics (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [355]-359) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Chapter I. Möbius transformations and non-euclidean geometry. -- §1 Pencils of circles - inversive geometry -- §2 Cross-ratio -- §3 Möbius transformations, direct and reversed -- §4 Invariant points and classification of Möbius transformations -- §5 Complex distance of two pairs of points -- §6 Non-euclidean metric -- §7 Isometric transformations -- §8 Non-euclidean trigonometry -- §9 Products and commutators of motions -- Chapter II. Discontinuous groups of motions and reversions. -- §10 The concept of discontinuity -- §11 Groups with invariant points or lines -- §12 A discontinuity theorem -- §13 ℱ-groups. Fundamental set and limit set -- §14 The convex domain of an ℱ-group. Characteristic and isometric neighbourhood -- §15 Quasi-compactness modulo ℱ and finite generation of ℱ -- Chapter III. Surfaces associated with discontinuous groups. -- §16 The surfaces D modulo ℭ and K(ℱ) modulo ℱ -- §17 Area and type numbers -- Chapter IV. Decompositions of groups. -- §18 Composition of groups -- §19 Decomposition of groups -- §20 Decompositions of ℱ-groups containing reflections -- §21 Elementary groups and elementary surfaces -- §22 Complete decomposition and normal form in the case of quasi-compactness -- §23 Exhaustion in the case of non-quasi-compactness -- Chapter V. Isomorphism and homeomorphism. -- §24 Topological and geometrical isomorphism -- §25 Topological and geometrical homeomorphism -- §26 Construction |
|
|
|
|