|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910809638603321 |
|
|
Autore |
Yan Zhenya |
|
|
Titolo |
Advances in nonlinear waves and symbolic computation / / Zhenya Yan |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Nova Science Publishers, c2009 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (162 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Nonlinear waves - Mathematical models |
Solitons - Mathematical models |
Nonlinear difference equations |
Differential equations, Nonlinear |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Advances in Nonlinear Waves and Symbolic Computation -- Contents -- Preface -- Chirped Optical Solitons -- Abstract -- 1. Introduction -- 2. Theoretical Model -- 3. Chirped Optical Soliton: Hirota Bilinear Method -- 4. Physical Explanation of Chirped Optical Soliton: Variational Analysis -- 5. Pulse Compression in Terms of Chirped Soliton -- 6. Chirped Higher Order Solitons -- 7. Studies on Chirped Higher Order Solitons -- 8. Conclusion -- Acknowledgement -- References -- Direct Methods and Symbolic Software for Conservation Laws of Nonlinear Equations -- Abstract -- 1. Introduction -- Part I: Partial Differential Equations in (1 + 1) Dimensions -- 2. The Most Famous Example in Historical Perspective -- 3. The Method of Undetermined Coefficients -- 4. Tools from the Calculus of Variations and Differential Geometry -- 5. Conservation Laws of Nonlinear Systems of Polynomial PDEs -- 6. Conservation Laws of Systems of PDEs with Transcendental Nonlinearities -- 7. Conservation Laws of Scalar Equations with Transcendental and Mixed Derivative Terms -- Part II: Nonlinear Differential-Difference Equations -- 8. Nonlinear DDEs and Conservation Laws -- 9. The Method of Undetermined Coefficients for DDEs -- 10. Discrete Euler and Homotopy Operators -- 11. Conservation Laws of Nonlinear Systems of DDEs -- 12. A New Method to Compute Conservation Laws of Nonlinear |
|
|
|
|