1.

Record Nr.

UNINA9910809581903321

Autore

Bhattacharyya Bijoy

Titolo

Electrochemical micromachining for nanofabrication, MEMS and nanotechnology / / Bijoy Bhattacharyya

Pubbl/distr/stampa

Amsterdam, [Netherlands] : , : William Andrew, , 2015

©2015

Descrizione fisica

1 online resource (297 p.)

Collana

Micro & Nano Technologies Series

Disciplina

671.35

Soggetti

Micromachining

Nanotechnology

Microelectromechanical systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Front Cover; Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology; Copyright; Dedication; Contents; About the Author; Foreword; Preface; Acknowledgment; Symbols; CHAPTER 1 - INTRODUCTION; 1.1 MICROMACHINING AND NANOFABRICATION; 1.2 MEMS AND MICROSYSTEMS; 1.3 CONDITIONS FOR MICROMACHINING AND NANOFABRICATION; 1.4 TYPES OF MICROMACHINING PROCESSES; 1.5 ELECTROCHEMICAL MICROMACHINING; 1.6 ELECTROCHEMICAL TECHNOLOGY FOR MICROSYSTEMS AND NANOFABRICATION; REFERENCES; CHAPTER 2 - ELECTROCHEMICAL MACHINING: MACRO TO MICRO; INTRODUCTION; 2.1 BACKGROUND OF ECM

2.2 FUNDAMENTALS OF ANODIC DISSOLUTION2.3 IMPORTANT INFLUENCING FACTORS OF ECM FOR MICROMACHINING; 2.4 EMM: PRESENT STATUS; REFERENCES; CHAPTER 3 - PRINCIPLE OF MATERIAL REMOVAL IN ELECTROCHEMICAL MICROMACHINING; 3.1 MECHANISM OF MATERIAL REMOVAL; 3.2 EQUIVALENT ELECTRICAL CIRCUIT FOR EMM; 3.3 MRR MODEL; REFERENCES; CHAPTER 4 - TYPES OF EMM; INTRODUCTION; 4.1 THROUGH-MASK EMM; 4.2 MASKLESS EMM; 4.3 THREE-DIMENSIONAL EMM; REFERENCES; CHAPTER 5 - ELECTROCHEMICAL MICROMACHINING SETUP; 5.1 DETAILS OF EMM SETUP; 5.2 CURRENT STATUS OF DEVELOPMENTS IN EMM SETUP; 5.3 IEG



CONTROL STRATEGY; REFERENCES

CHAPTER 6 - DESIGN AND DEVELOPMENTS OF MICROTOOLSINTRODUCTION; 6.1 TYPES OF EMM TOOLS; 6.2 MICROTOOL DESIGN FOR EMM; 6.3 METHODS OF MICROTOOL FABRICATION; 6.4 EMM FOR MICROTOOL FABRICATION; 6.5 DIFFERENT FEATURES OF MICROTOOLS FABRICATED BY EMM; REFERENCES; CHAPTER 7 - INFLUENCING FACTORS OF EMM; INTRODUCTION; 7.1 EMM POWER SUPPLY; 7.2 ELECTROLYTE FOR EMM; 7.3 INFLUENCE OF IEG; 7.4 INFLUENCE OF TEMPERATURE, CONCENTRATION, AND ELECTROLYTE FLOW; 7.5 INFLUENCE OF TOOL FEED RATE; REFERENCES; CHAPTER 8 - IMPROVEMENT OF MACHINING ACCURACY; INTRODUCTION; 8.1 TOOL INSULATION

8.2 ELECTROLYTE CIRCULATION8.3 SHAPE OF THE MICROTOOL; 8.4 TOOL MOVEMENT STRATEGY; 8.5 STRAY CURRENT AND MICROSPARKS PHENOMENA IN EMM; 8.6 HYBRID EMM; 8.7 SELECTION OF COMBINATION OF MACHINING PARAMETERS; REFERENCES; CHAPTER 9 - ADVANTAGES, LIMITATIONS, AND APPLICATIONS OF EMM; INTRODUCTION; 9.1 ADVANTAGES; 9.2 APPLICATIONS; 9.3 LIMITATIONS AND REMEDIES; REFERENCES; CHAPTER 10 - MICRODEVICES FABRICATION FOR MICROELECTROMECHANICAL SYSTEMS AND OTHER MICROENGINEERING APPLICATIONS; INTRODUCTION; 10.1 MICROELECTROMECHANICAL SYSTEMS; 10.2 SEMICONDUCTOR MICROMACHINING BY EMM

10.3 MICROENGINEERING APPLICATIONSREFERENCES; CHAPTER 11 - ELECTROCHEMICAL MICROSYSTEM TECHNOLOGY; INTRODUCTION; 11.1 FEATURES OF EMST; 11.2 SCALING DOWN AND SCALING UP; 11.3 ELECTROCHEMICAL MICROCELL AND MICROELECTRODE; 11.4 ELECTROCHEMICAL REACTIONS IN EMST; 11.5 APPLICATIONS OF EMST IN MICROSYSTEM TECHNOLOGY; REFERENCES; CHAPTER 12 - RECENT ADVANCEMENTS IN EMM FOR MICRO AND NANOFABRICATION; INTRODUCTION; 12.1 WIRE EMM; 12.2 SOLID-STATE EMM; 12.3 SURFACE STRUCTURING; 12.4 ELECTROCHEMICAL WET STAMPING; 12.5 ELECTROCHEMICAL PATTERNING BY ENFACE TECHNOLOGY; 12.6 NANOFABRICATION BY EMM

REFERENCES