|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910809222203321 |
|
|
Titolo |
Trends in representation theory of algebras and related topics : Workshop on Representations of Algebras and Related Topics, August 11-14, 2004, Querétaro, México / / José A. de la Peña, Raymundo Bautista, editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2006] |
|
©2006 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-8218-7996-0 |
0-8218-3818-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (282 p.) |
|
|
|
|
|
|
Collana |
|
Contemporary mathematics, , 0271-4132 ; ; 406 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Representations of algebras |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Preface""; ""Cluster-tilting theory""; ""Introduction to moduli spaces associated to quivers""; ""From triangulated categories to Lie algebras: A theorem of Peng and Xiao""; ""A-infinity algebras, modules and functor categories""; ""Rouquier's theorem on representation dimension""; ""Foundation of the representation theory of Artin algebras, using the Gabriel-Roiter measure""; ""Categorification of sl2 and braid groups""; ""1. Introduction""; ""Part 1. sl2-categorifications""; ""2. sl2-categorifications""; ""3. Affine Heeke algebras""; ""4. Categorifications on blocks of бn"" |
""5. Minimal categorifications""""6. Homotopy and derived equivalences""; ""7. Representations of gln(C)""; ""Part 2. Categorification of braid groups""; ""8. Self-equivalences""; ""9. The 2-braid group""; ""10. Principal block of a semi-simple complex Lie algebra""; ""11. Flag varieties""; ""12. Appendix : associativity of kernel transforms""; ""References""; ""Selfinjective algebras: Finite and tame type""; ""Support varieties for modules and complexes"" |
|
|
|
|
|
|
|