1.

Record Nr.

UNINA9910787582203321

Titolo

Molecular approaches in plant abiotic stress / / editors: R.K. Gaur, Pradeep Sharma

Pubbl/distr/stampa

Boca Raton, Fla. : , : CRC Press, , 2014

ISBN

0-429-07350-X

1-4665-8893-4

Descrizione fisica

1 online resource (430 p.)

Altri autori (Persone)

GaurRajarshi Kumar

SharmaPradeep K. <1953->

Disciplina

631.5/82

631.582

Soggetti

Crops - Effect of stress on

Crops - Physiology

Crop improvement

Crops - Genetics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front Cover; Preface; Contents; List of Contributors; 1. Genes Ppd and Vrn as Components of Molecular Genetic System of Wheat Regulation Resistance (Triticum aestivum L.) to Abiotic Stress; 2. Plant WRKY Gene Family and its Response to Abiotic Stress; 3. Induced Tolerance and Priming for Abiotic Stress in Plants; 4. Roles of HSP70 in Plant Abiotic Stress; 5. Potential Role of Small RNAs during Stress in Plants; 6. DeepSuperSAGE in a Friendly Bioinformatic Approach: Identifying Molecular Targets Responding to Abiotic Stress in Plants; 7. Regulation of Translation as Response to Abiotic Stress

8. Metabolomics and its Role in Study of Plant Abiotic Stress Responses9. Molecular Approaches for Plant Transcription Factor Characterization; 10. New Insights in the Functional Genomics of Plants Responding to Abiotic Stress; 11. Cold Stress Signaling and Tolerance in Rice; 12. Mathematical Modelling for Investigation of Plant Cold Tolerance; 13. Physiological, Biochemical and Molecular Mechanisms of Drought Tolerance in Plants; 14. Proteomic Analyses of Alterations in Plant Proteome Under Drought Stress



15. AREB/ABF Proteins are Master Transcription Factors that Mediate ABA-Dependent Gene Regulation During Water-stress16. Root Studies for Drought Tolerance in Wheat; 17. Abiotic Stress in Lotus: Aluminum and Drought; 18. Genes Regulated in Plants under Salt Stress; 19. Molecular Aspects of Crop Response to Abiotic Stress with Emphasis on Drought and Salinity; 20. Plant-arthropod Interactions Affected by Water Deficit Stress through Association with Changes in Plant free Amino Acid Accumulations; 21. Hydrogen Sulfide as a Potent Regulator of Plant Responses to Abiotic Stress Factors

22. Multifaceted Role of Glutathione in Environmental Stress ManagementAbout the Editors; Color Plate Section

Sommario/riassunto

Plants under abiotic stress are those suffering from drought, extreme temperatures, flood and other natural-but non-living-factors. Abiotic stress is responsible for reduced yields in several major crops, and climate change is focusing research in this area. To minimize cellular damage cause by such stresses, plants have evolved complex, well-coordinated adaptive responses that operate at the transcriptional level. Understanding these processes is key to manipulating plant performance to withstand stress. This book deals with the role of gene silencing in the adaptation of plants to these s



2.

Record Nr.

UNINA9910808679703321

Autore

Parker Jeffrey S.

Titolo

Low-energy lunar trajectory design / / Jeffrey S. Parker and Rodney L. Anderson

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , 2014

©2014

ISBN

1-118-85531-0

1-118-85506-X

1-118-85497-7

Descrizione fisica

1 online resource (437 p.)

Collana

JPL Deep-Space Communications and Navigation Series

Disciplina

629.4/11

Soggetti

Lunar probes - Trajectories

Space flight to the moon - Cost control

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Title Page; Copyright Page; CONTENTS; Foreword; Preface; Acknowledgments; Authors; 1 Introduction and Executive Summary; 1.1 Purpose; 1.2 Organization; 1.3 Executive Summary; 1.3.1 Direct, Conventional Transfers; 1.3.2 Low-Energy Transfers; 1.3.3 Summary: Low-Energy Transfers to Lunar Libration Orbits; 1.3.4 Summary: Low-Energy Transfers to Low Lunar Orbits; 1.3.5 Summary: Low-Energy Transfers to the Lunar Surface; 1.4 Background; 1.5 The Lunar Transfer Problem; 1.6 Historical Missions; 1.6.1 Missions Implementing Direct Lunar Transfers

1.6.2 Low-Energy Missions to the Sun-Earth Lagrange Points1.6.3 Missions Implementing Low-Energy Lunar Transfers; 1.7 Low-Energy Lunar Transfers; 2 Methodology; 2.1 Methodology Introduction; 2.2 Physical Data; 2.3 Time Systems; 2.3.1 Dynamical Time, ET; 2.3.2 International Atomic Time, TAI; 2.3.3 Universal Time, UT; 2.3.4 Coordinated Universal Time, UTC; 2.3.5 Lunar Time; 2.3.6 Local True Solar Time, LTST; 2.3.7 Orbit Local Solar Time, OLST; 2.4 Coordinate Frames; 2.4.1 EME2000; 2.4.2 EMO2000; 2.4.3 Principal Axis Frame; 2.4.4 IAU Frames; 2.4.5 Synodic Frames; 2.5 Models; 2.5.1 CRTBP

2.5.2 Patched Three-Body Model2.5.3 JPL Ephemeris; 2.6 Low-Energy



Mission Design; 2.6.1 Dynamical Systems Theory; 2.6.2 Solutions to the CRTBP; 2.6.3 Poincaré Maps; 2.6.4 The State Transition and Monodromy Matrices; 2.6.5 Differential Correction; 2.6.6 Constructing Periodic Orbits; 2.6.7 The Continuation Method; 2.6.8 Orbit Stability; 2.6.9 Examples of Practical Three-Body Orbits; 2.6.10 Invariant Manifolds; 2.6.11 Orbit Transfers; 2.6.12 Building Complex Orbit Chains; 2.6.13 Discussion; 2.7 Tools; 2.7.1 Numerical Integrators; 2.7.2 Optimizers; 2.7.3 Software

3 Transfers to Lunar Libration Orbits3.1 Executive Summary; 3.2 Introduction; 3.3 Direct Transfers Between Earth and Lunar Libration Orbits; 3.3.1 Methodology; 3.3.2 The Perigee-Point Scenario; 3.3.3 The Open-Point Scenario; 3.3.4 Surveying Direct Lunar Halo Orbit Transfers; 3.3.5 Discussion of Results; 3.3.6 Reducing the ΔV Cost; 3.3.7 Conclusions; 3.4 Low-Energy Transfers Between Earth and Lunar Libration Orbits; 3.4.1 Modeling a Low-Energy Transfer using Dynamical Systems Theory; 3.4.2 Energy Analysis of a Low-Energy Transfer

3.4.3 Constructing a Low-Energy Transfer in the Patched Three-Body Model3.4.4 Constructing a Low-Energy Transfer in the Ephemeris Model of the Solar System; 3.4.5 Families of Low-Energy Transfers; 3.4.6 Monthly Variations in Low-Energy Transfers; 3.4.7 Transfers to Other Three-Body Orbits; 3.5 Three-Body Orbit Transfers; 3.5.1 Transfers from an LL2 Halo Orbit to a Low Lunar Orbit; 4 Transfers to Low Lunar Orbits; 4.1 Executive Summary; 4.2 Introduction; 4.3 Direct Transfers Between Earth and Low Lunar Orbit; 4.4 Low-Energy Transfers Between Earth and Low Lunar Orbit; 4.4.1 Methodology

4.4.2 Example Survey

Sommario/riassunto

<ul><li>Surveys thousands of possible trajectories that may be used to transfer spacecraft between Earth and the moon, including transfers to lunar libration orbits, low lunar orbits, and the lunar surface</li><li>Provides information about the methods, models, and tools used to design low-energy lunar transfers</li><li>Includes discussion about the variations of these transfers from one month to the next, and the important operational aspects of implementing a low-energy lunar transfer</li><li>Additional discussions address navigation, station-keeping, and spacecraft systems issues</li></ul>