1.

Record Nr.

UNINA9910808332903321

Autore

Kennes Christian

Titolo

Air pollution prevention and control : bioreactors and bioenergy / / edited by Christian Kennes and María C. Veiga

Pubbl/distr/stampa

Chichester, West Sussex, : Wiley, c2013

ISBN

1-118-52335-0

1-118-52336-9

1-299-31579-8

1-118-52334-2

Edizione

[1st ed.]

Descrizione fisica

1 online resource (571 pages)

Altri autori (Persone)

KennesChristian

VeigaMaría C

Disciplina

628.5/36

Soggetti

Air - Pollution

Air - Purification

Bioreactors

Biomass energy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Cover; Title Page; Copyright; Contents; List of Contributors; Preface; Part I Fundamentals and Microbiological Aspects; Chapter 1 Introduction to Air Pollution; 1.1 Introduction; 1.2 Types and sources of air pollutants; 1.2.1 Particulate matter; 1.2.2 Carbon monoxide and carbon dioxide; 1.2.3 Sulphur oxides; 1.2.4 Nitrogen oxides; 1.2.5 Volatile organic compounds (VOCs); 1.2.6 Odours; 1.2.7 Ozone; 1.2.8 Calculating concentrations of gaseous pollutants; 1.3 Air pollution control technologies; 1.3.1 Particulate matter; 1.3.2 Volatile organic and inorganic compounds

1.3.2.1 Nonbiological processes1.3.2.2 Bioprocesses; 1.3.3 Environmentally friendly bioenergy; 1.4 Conclusions; References; Chapter 2 Biodegradation and Bioconversion of Volatile Pollutants; 2.1 Introduction; 2.2 Biodegradation of volatile compounds; 2.2.1 Inorganic compounds; 2.2.1.1 Hydrogen sulphide (H2S); 2.2.1.2 Ammonia; 2.2.2 Organic compounds; 2.2.2.1 CxHy pollutants; 2.2.2.2 CxHyOz



pollutants; 2.2.2.3 Organic sulphur compounds; 2.2.2.4 Halogenated organic compounds; 2.3 Mass balance calculations; 2.4 Bioconversion of volatile compounds; 2.4.1 Carbon monoxide and carbon dioxide

2.4.2 Volatile organic compounds (VOCs)2.5 Conclusions; References; Chapter 3 Identification and Characterization of Microbial Communities in Bioreactors; 3.1 Introduction; 3.2 Molecular techniques to characterize the microbial communities in bioreactors; 3.2.1 Quantification of the community members; 3.2.1.1 Microscopic direct counts; 3.2.1.2 Quantitative PCR; 3.2.2 Assessment of microbial community diversity and structure; 3.2.2.1 Biochemical methods; 3.2.2.2 Genetic fingerprinting methods; 3.2.2.3 Analysis of fingerprint data by multivariate statistical tools and diversity indices

3.2.3 Determination of the microbial community composition3.2.3.1 Construction of small sub-unit (SSU) rRNA clone libraries followed by phylogenetic identification by randomly sequencing the clones; 3.2.3.2 Fluorescent in situ hybridization (FISH); 3.2.4 Techniques linking microbial identity to ecological function; 3.2.4.1 Stable isotope probing (SIP); 3.2.4.2 Microautoradiography combined with FISH (FISH-MAR); 3.2.5 Microarray techniques; 3.2.6 Synthesis; 3.3 The link of microbial community structure with ecological function in engineered ecosystems; 3.3.1 Introduction

3.3.2 Temporal and spatial dynamics of the microbial community structure under stationary conditions in bioreactors3.3.2.1 Temporal stability and dynamics of the total bacterial community structure in the steady state; 3.3.2.2 Microbial and functional stratification along the biofilter height; 3.3.2.3 The microbial community structure-ecosystem function relationship; 3.3.3 Impact of environmental disturbances on the microbial community structure within bioreactors; 3.4 Conclusions; References; Part II Bioreactors for Air Pollution Control; Chapter 4 Biofilters; 4.1 Introduction

4.2 Historical perspective of biofilters

Sommario/riassunto

In recent years, air pollution has become a major worldwide concern. Air pollutants can affect metabolic activity, impede healthy development, and exhibit carcinogenic and toxic properties in humans. Over the past two decades, the use of microbes to remove pollutants from contaminated air streams has become a widely accepted and efficient alternative to the classical physical and chemical treatment technologies. Air Pollution Prevention and Control: Bioreactors and Bioenergy focusses on these biotechnological alternatives looking at both the optimization of bioreactors and the development o