1.

Record Nr.

UNINA9910808208403321

Autore

Mayer Günter

Titolo

Interval analysis : and automatic result verification / / Günter Mayer

Pubbl/distr/stampa

Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017

©2017

ISBN

3-11-049805-7

3-11-049946-0

Descrizione fisica

1 online resource (518 pages)

Collana

De Gruyter Studies in Mathematics, , 0179-0986 ; ; Volume 65

Classificazione

SK 910

Disciplina

511.42

Soggetti

Interval analysis (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Frontmatter -- Preface -- Contents -- 1. Preliminaries -- 2. Real intervals -- 3. Interval vectors, interval matrices -- 4. Expressions, P-contraction, ε-inflation -- 5. Linear systems of equations -- 6. Nonlinear systems of equations -- 7. Eigenvalue problems and related ones -- 8. Automatic differentiation -- 9. Complex intervals -- Final Remarks -- Appendix -- A. Proof of the Jordan normal form -- B. Two elementary proofs of Brouwer's fixed point theorem -- C. Proof of the Newton-Kantorovich Theorem -- D. Convergence proof of the row cyclic Jacobi method -- E. The CORDIC algorithm -- F. The symmetric solution set - a proof of Theorem 5.2.6 -- G. A short introduction to INTLAB -- Bibliography -- Symbol Index -- Author Index -- Subject Index

Sommario/riassunto

This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through many examples and exercises, and guides the reader from the basics of the theory to current research topics in the mathematics of computation. Contents Preliminaries Real intervals Interval vectors, interval matrices Expressions, P-contraction, ε-inflation Linear systems of equations Nonlinear systems of equations Eigenvalue problems Automatic differentiation Complex intervals