1.

Record Nr.

UNINA9910711147403321

Autore

Wright James R

Titolo

The electrophoretic mobility of asphaltenes in nitromethane / / James R. Wright, Richard R. Minesinger

Pubbl/distr/stampa

Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1962

Descrizione fisica

1 online resource

Collana

NBS report ; ; 7448

Altri autori (Persone)

MinesingerRichard R

WrightJames R

Soggetti

Asphalt - Testing

Asphaltene - Testing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

1962.

Contributed record: Metadata reviewed, not verified. Some fields updated by batch processes.

Title from PDF title page.

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNINA9910808071903321

Autore

Alexopoulos Georgios K. <1962->

Titolo

Sub-Laplacians with drift on Lie groups of polynomial volume growth / / Georgios K. Alexopoulos

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2002

ISBN

1-4704-0332-3

Descrizione fisica

1 online resource (119 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 739

Disciplina

510 s

512/.55

Soggetti

Lie groups

Functional analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Volume 155, number 739 (end of volume)."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

""11. A Taylor formula for the heat functions on nilpotent Lie groups""""12. Harnack inequalities for the derivatives of the heat functions on nilpotent Lie groups""; ""13. Harmonic functions of polynomial growth on nilpotent Lie groups""; ""14. Proof of the Berry-Esseen estimate in the case of nilpotent Lie groups""; ""15. The nil-shadow of a simply connected solvable Lie group""; ""16. Connected Lie groups of polynomial volume growth""; ""17. Proof of propositions 1.6.3 and 1.6.4 in the general case""; ""18. Proof of the Gaussian estimate in the general case""

""19. A Berry-Esseen estimate for the heat kernels on connected Lie groups of polynomial volume growth""""20. Polynomials on connected Lie groups of polynomial growth""; ""21. A Taylor formula for the heat functions on connected Lie groups of polynomial volume growth""; ""22. Harnack inequalities for the derivatives of the heat functions""; ""23. Harmonic functions of polynomial growth""; ""24. Berry-Esseen type of estimates for the derivatives of the heat kernel""; ""25. Riesz transforms""; ""Bibliography""