1.

Record Nr.

UNINA9910807915203321

Titolo

Biomolecular information processing : from logic systems to smart sensors and actuators / / edited by Evgeny Katz

Pubbl/distr/stampa

Weinheim, : Wiley-VCH, c2012

ISBN

3-527-64549-7

1-283-59697-0

9786613909428

3-527-64550-0

Edizione

[1st ed.]

Descrizione fisica

1 online resource (379 p.)

Altri autori (Persone)

KatzEvgeny

Disciplina

572.80285

Soggetti

Molecular biology - Data processing

Molecular biology - Computer programs

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Biomolecular Information Processing; Contents; Preface; List of Contributors; 1 Biomolecular Computing: From Unconventional Computing to ''Smart'' Biosensors and Actuators - Editorial Introduction; References; 2 Peptide-Based Computation: Switches, Gates, and Simple Arithmetic; 2.1 Introduction; 2.2 Peptide-Based Replication Networks; 2.2.1 Template-Assisted Replication; 2.2.2 Theoretical Prediction of the Network Connectivity; 2.2.3 De novo Designed Synthetic Networks; 2.3 Logic Gates within Ternary Networks; 2.3.1 Uniform Design Principles of All Two-Input Gates; 2.3.2 OR Logic

2.3.3 AND Logic 2.3.4 NAND Logic; 2.3.5 XOR Logic; 2.4 Symmetry and Order Requirements for Constructing the Logic Gates; 2.4.1 Symmetry and Order in Peptide-Based Catalytic Networks; 2.4.2 How Symmetry and Order Affect the Replication of RNA Quasispecies; 2.5 Taking the Steps toward More Complex Arithmetic; 2.5.1 Arithmetic Units; 2.5.2 Network Motifs; 2.6 Experimental Logic Gates; 2.6.1 OR Logic; 2.6.2 NOT, NOR, and NOTIF Logic; 2.6.3 Additional Logic Operations; 2.7 Adaptive Networks; 2.7.1 Chemical Triggering; 2.7.2 Light Triggering; 2.7.3 Light-Induced Logic Operations

2.8 Peptide-Based Switches and Gates for Molecular Electronics 2.9



Summary and Conclusion; Acknowledgments; References; 3 Biomolecular Electronics and Protein-Based Optical Computing; 3.1 Introduction; 3.2 Biomolecular and Semiconductor Electronics; 3.2.1 Size and Speed; 3.2.2 Architecture; 3.2.3 Nanoscale Engineering; 3.2.4 Stability; 3.2.5 Reliability; 3.3 Bacteriorhodopsin as a Photonic and Holographic Material for Bioelectronics; 3.3.1 The Light-Induced Photocycle; 3.3.2 The Branched Photocycle; 3.4 Fourier Transform Holographic Associative Processors

3.5 Three-Dimensional Optical Memories 3.5.1 Write, Read, and Erase Operations; 3.5.2 Efficient Algorithms for Data Processing; 3.5.3 Multiplexing and Error Analysis; 3.6 Genetic Engineering of Bacteriorhodopsin for Device Applications; 3.7 Future Directions; Acknowledgments; References; 4 Bioelectronic Devices Controlled by Enzyme-Based Information Processing Systems; 4.1 Introduction; 4.2 Enzyme-Based Logic Systems Producing pH Changes as Output Signals; 4.3 Interfacing of the Enzyme Logic Systems with Electrodes Modified with Signal-Responsive Polymers

4.4 Switchable Biofuel Cells Controlled by the Enzyme Logic Systems 4.5 Biomolecular Logic Systems Composed of Biocatalytic and Biorecognition Units and Their Integration with Biofuel Cells; 4.6 Processing of Injury Biomarkers by Enzyme Logic Systems Associated with Switchable Electrodes; 4.7 Summary and Outlook; Acknowledgments; References; 5 Enzyme Logic Digital Biosensors for Biomedical Applications; 5.1 Introduction; 5.2 Enzyme-Based Logic Systems for Identification of Injury Conditions; 5.3 Multiplexing of Injury Codes for the Parallel Operation of Enzyme Logic Gates

5.4 Scaling Up the Complexity of the Biocomputing Systems for Biomedical Applications - Mimicking Biochemical Pathways

Sommario/riassunto

Edited by a renowned and much cited chemist, this book covers the whole span of molecular computers that are based on biomolecules. The contributions by all the major scientists in the field provide an excellent overview of the latest developments in this rapidly expanding area. A must-have for all researchers working on this very hot topic. Perfectly complements Molecular and Supramolecular Information Processing, also by Prof. Katz, and available as a two-volume set.