|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910807442003321 |
|
|
Titolo |
Magnetotails in the solar system / / Andreas Keiling, Caitríona M. Jackman, Peter A. Delamere, editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, New Jersey : , : Wiley, , [2015] |
|
©2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-118-84229-4 |
1-118-84232-4 |
1-118-84237-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (420 p.) |
|
|
|
|
|
|
Collana |
|
Geophysical monograph ; ; 207 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Magnetosphere |
Planets - Atmospheres |
Solar system |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"This work is a co-publication between the American Geophysical Union and John Wiley and Sons, Inc. |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Title Page; Copyright Page; Contents; Contributors; Preface; Section I: Introduction; Chapter 1 Magnetotail: Unsolved Fundamental Problem of Magnetospheric Physics; 1.1. Introduction; 1.2. Essential Properties; 1.3. Global Stress Balance Problem; 1.4. What Maintains a Magnetotail?; 1.5. Conclusion; APPENDIX: Some Questions about Internal Pressure; Acknowledgments; References; Section II: Tutorials; Chapter 2 Mercury's Magnetotail; 2.1. Introduction; 2.2. Planetary Magnetic Field; 2.3. Magnetosphere; 2.4. External Driving; 2.5. Tail Dynamics; 2.6. Summary; References |
Chapter 3 Magnetotails of Mars and Venus3.1. Introduction; 3.2. General Features of Magnetotails on Mars and Venus; 3.3. Ion Acceleration; 3.4. Bursty Flows; 3.5. Reconnection in Induced Tails; 3.6. Pressure Balance and Asymmetry of Plasma Sheet; 3.7. Ion Escape through Tails; 3.8. Induced Magnetic Tails for Flow Aligned IMF; 3.9. Effect of Crustal Fields on Near-Mars Tail; 3.10. Conclusions; Acknowledgments; References; Chapter 4 Earth's Magnetotail; 4.1. Introduction; 4.2. Dynamic Magnetotail; 4.3. Magnetospheric Substorm; |
|
|
|
|
|
|
|
|
|
|
|
4.4. Steady Magnetospheric Convection |
4.5. Sawtooth Injection Events4.6. Pseudo Breakups; 4.7. Poleward Boundary Intensifications; 4.8. Questions Related to Dynamics of Magnetotail; Acknowledgments; References; Chapter 5 Jupiter's Magnetotail; 5.1. Introduction; 5.2. Particle Parameters of Jupiter's Magnetotail; 5.3. Energetic Events and Magnetic Reconnection; 5.4. Summary; 5.5. Future Exploration; Acknowledgments; References; Chapter 6 Saturn's Magnetotail; 6.1. Introduction; 6.2. Large-Scale Tail Structure; 6.3. Magnetospheric Dynamics; 6.4. Remote Sensing of Tail Dynamics; 6.5. Discussion; Acknowledgments; References |
Chapter 7 Magnetotails of Uranus and Neptune7.1. Introduction; 7.2. Magnetospheres of Uranus and Neptune; 7.3. Magnetotail Configuration at Uranus and Neptune; 7.4. Magnetotail Dynamics; 7.5. Discussion; Acknowledgments; References; Chapter 8 Satellite Magnetotails; 8.1. Introduction; 8.2. Inert Moons; 8.3. Conducting/Mass-Loading Moons; 8.4. A Strongly Magnetized Moon: Ganymede; 8.5. Summary; Acknowledgments; References; Chapter 9 Moon's Plasma Wake; 9.1. Introduction; 9.2. Structure and Dynamics of Lunar Wake; 9.3. Simulations of Lunar Wake; 9.4. Frontiers in Study of Lunar Wake |
AcknowledgmentsReferences; Chapter 10 Physics of Cometary Magnetospheres; 10.1. Introduction; 10.2. The Coma; 10.3. Mass Loading; 10.4. Mathematical Description; 10.5. Bow Shock and Cometosheath; 10.6. Cometary Magnetotails; 10.7. Model-Data Comparison; 10.8. Rosetta; Acknowledgments; References; Chapter 11 Heliotail; 11.1. Introduction; 11.2. Observations of the Heliotail; 11.3. Discussion; Acknowledgments; References; Section III: Specialized Topics; Chapter 12 Formation of Magnetotails: Fast and Slow Rotators Compared; 12.1. Introduction |
12.2. Terrestrial Tail Formation: Solar Wind Reconnection Dominant |
|
|
|
|
|
|
Sommario/riassunto |
|
All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess well developed magnetotails. It is not only the strongly magnetized planets that have magnetotails. Mars and Venus have no global intrinsic magnetic field, yet they possess induced magnetotails. Comets have magnetotails that are formed by the draping of the interplanetary magnetic field. In the case of planetary satellites (moons), the magnetotail refers to the wake region behind the satellite in the flow of either the solar wind or the magnetosp |
|
|
|
|
|
|
|
| |