1.

Record Nr.

UNINA9910806919403321

Autore

Montero José María

Titolo

Spatial and spatio-temporal geostatistical modeling and kriging / / José-María Montero, Department of Statistics, University of Castilla-La Mancha, Spain, Gema Fernández-Aviles, Department of Statistics, University of Castilla-La Mancha, Spain, Jorge Mateu, Department of Mathematics, University Jaume I of Castellon, Spain

Pubbl/distr/stampa

Chichester, West Sussex, UK : , : John Wiley and Sons, Inc., , 2015

ISBN

1-118-76238-X

1-118-76243-6

1-118-76242-8

Edizione

[1st ed.]

Descrizione fisica

1 online resource

Collana

Wiley Series in Probability and Statistics

Altri autori (Persone)

Fernández-AvilésGema

MateuJorge

Disciplina

551.01/5195

Soggetti

Geology - Statistical methods

Kriging

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright -- Dedication -- Contents -- Foreword by Abdel H. El-Shaarawi -- Foreword by Hao Zhang -- List of figures -- List of tables -- About the companion website -- Chapter 1 From classical statistics to geostatistics -- 1.1 Not all spatial data are geostatistical data -- 1.2 The limits of classical statistics -- 1.3 A real geostatistical dataset: data on carbon monoxide in Madrid, Spain -- Chapter 2 Geostatistics: preliminaries -- 2.1 Regionalized variables -- 2.2 Random functions -- 2.3 Stationary and intrinsic hypotheses -- 2.3.1 Stationarity -- 2.3.2 Stationary random functions in the strict sense -- 2.3.3 Second-order stationary random functions -- 2.3.4 Intrinsically stationary random functions -- 2.3.5 Non-stationary random functions -- 2.4 Support -- Chapter 3 Structural analysis -- 3.1 Introduction -- 3.2 Covariance function -- 3.2.1 Definition and properties -- 3.2.2 Some theoretical isotropic covariance functions -- 3.3 Empirical covariogram -- 3.4 Semivariogram -- 3.4.1 Definition and properties -- 3.4.2 Behavior at intermediate and large distances --



3.4.3 Behavior near the origin -- 3.4.4 A discontinuity at the origin -- 3.5 Theoretical semivariogram models -- 3.5.1 Semivariograms with a sill -- 3.5.2 Semivariograms with a hole effect -- 3.5.3 Semivariograms without a sill -- 3.5.4 Combining semivariogram models -- 3.6 Empirical semivariogram -- 3.7 Anisotropy -- 3.8 Fitting a semivariogram model -- 3.8.1 Manual fitting -- 3.8.2 Automatic fitting -- Chapter 4 Spatial prediction and kriging -- 4.1 Introduction -- 4.2 Neighborhood -- 4.3 Ordinary kriging -- 4.3.1 Point observation support and point predictor -- 4.3.2 Effects of a change in the model parameters -- 4.3.3 Point observation support and block predictor -- 4.3.4 Block observation support and block predictor.

4.4 Simple kriging: the special case of known mean -- 4.5 Simple kriging with an estimated mean -- 4.6 Universal kriging -- 4.6.1 Point observation support and point predictor -- 4.6.2 Point observation support and block predictor -- 4.6.3 Block observation support and block predictor -- 4.6.4 Kriging and exact interpolation -- 4.7 Residual kriging -- 4.7.1 Direct residual kriging -- 4.7.2 Iterative residual kriging -- 4.7.3 Modified iterative residual kriging -- 4.8 Median-Polish kriging -- 4.9 Cross-validation -- 4.10 Non-linear kriging -- 4.10.1 Disjunctive kriging -- 4.10.2 Indicator kriging -- Chapter 5 Geostatistics and spatio-temporal random functions -- 5.1 Spatio-temporal geostatistics -- 5.2 Spatio-temporal continuity -- 5.3 Relevant spatio-temporal concepts -- 5.4 Properties of the spatio-temporal covariance and semivariogram -- Chapter 6 Spatio-temporal structural analysis (I): empirical semivariogram and covariogram estimation and model fitting -- 6.1 Introduction -- 6.2 The empirical spatio-temporal semivariogram and covariogram -- 6.3 Fitting spatio-temporal semivariogram and covariogram models -- 6.4 Validation and comparison of spatio-temporal semivariogram and covariogram models -- Chapter 7 Spatio-temporal structural analysis (II): theoretical covariance models -- 7.1 Introduction -- 7.2 Combined distance or metric model -- 7.3 Sum model -- 7.4 Combined metric-sum model -- 7.5 Product model -- 7.6 Product-sum model -- 7.7 Porcu and Mateu mixture-based models -- 7.8 General product-sum model -- 7.9 Integrated product and product-sum models -- 7.10 Models proposed by Cressie and Huang -- 7.11 Models proposed by Gneiting -- 7.12 Mixture models proposed by Ma -- 7.12.1 Covariance functions generated by scale mixtures -- 7.12.2 Covariance functions generated by positive power mixtures.

7.13 Models generated by linear combinations proposed by Ma -- 7.14 Models proposed by Stein -- 7.15 Construction of covariance functions using copulas and completely monotonic functions -- 7.16 Generalized product-sum model -- 7.17 Models that are not fully symmetric -- 7.18 Mixture-based Bernstein zonally anisotropic covariance functions -- 7.19 Non-stationary models -- 7.19.1 Mixture of locally orthogonal stationary processes -- 7.19.2 Non-stationary models proposed by Ma -- 7.19.3 Non-stationary models proposed by Porcu and Mateu -- 7.20 Anisotropic covariance functions by Porcu and Mateu -- 7.20.1 Constructing temporally symmetric and spatially anisotropic covariance functions -- 7.20.2 Generalizing the class of spatio-temporal covariance functions proposed by Gneiting -- 7.20.3 Differentiation and integration operators acting on classes of anisotropic covariance functions on the basis of isotropic components: 'La descente étendue' -- 7.21 Spatio-temporal constructions based on quasi-arithmetic means of covariance functions -- 7.21.1 Multivariate quasi-arithmetic compositions -- 7.21.2 Permissibility criteria for quasi-arithmetic means of covariance functions on Rd -- 7.21.3 The use of quasi-arithmetic functionals to build non-separable, stationary, spatio-



temporal covariance functions -- 7.21.4 Quasi-arithmeticity and non-stationarity in space -- Chapter 8 Spatio-temporal prediction and kriging -- 8.1 Spatio-temporal kriging -- 8.2 Spatio-temporal kriging equations -- Chapter 9 An introduction to functional geostatistics -- 9.1 Functional data analysis -- 9.2 Functional geostatistics: The parametric vs. the non-parametric approach -- 9.3 Functional ordinary kriging -- 9.3.1 Preliminaries -- 9.3.2 Functional ordinary kriging equations -- 9.3.3 Estimating the trace-semivariogram -- 9.3.4 Functional cross-validation -- Appendices.

Appendix A Spectral representations -- A.1 Spectral representation of the covariogram -- A.2 Spectral representation of the semivariogram -- Appendix B Probabilistic aspects of Uij=Z(si)-Z(sj) -- Appendix C Basic theory on restricted maximum likelihood -- C.1 Restricted Maximum Likelihood equation -- Appendix D Most relevant proofs -- D.1 Product model: Peculiarity (ii) (Rodríguez-Iturbe and Mejia 1974 -- De Cesare et al. 1997) -- D.2 Product model: Peculiarity (iv) (Rodríguez-Iturbe and Mejia 1974 -- De Cesare et al. 1997) -- D.3 Product-sum model: Semivariogram expression (7.29) (De Iaco et al. 2001) -- D.4 General product-sum model: Obtaining the constant k (De Iaco et al. 2001) -- D.5 General product-sum model: Theorem 7.8.1 (De Iaco et al. 2001) -- D.6 General product-sum model: Theorem 7.8.2. (De Iaco et al. 2001) -- D.7 Generalized product-sum model. Proposition 1 1 (Gregori et al. 2008) -- D.8 Generalized product-sum model. Proposition 1 2 for n = 2 (Gregori et al. 2008) -- D.9 Generalized product-sum model. Corollary 1 3 of Proposition 2 (Gregori et al. 2008) -- D.10 Generalized product-sum model. Range of θ. Case 1: The Gaussian case 4 (Gregori et al. 2008) -- D.11 Generalized product-sum model. Range of θ. Case 2: The Matérn case 5 (Gregori et al. 2008) -- D.12 Generalized product-sum model. Range of θ. Case 3: The Gaussian-Matérn case 6 (Gregori et al. 2008) -- D.13 Mixture-based Bernstein zonally anisotropic covariance functions. Theorem 7.18.1 (Ma 2003b) -- D.14 Construction of non-stationary spatio-temporal covariance functions using spatio-temporal stationary covariances and intrinsically stationary semivariograms. Equation (7.159) (Ma 2003c).

D.15 Construction of non-stationary spatio-temporal covariance functions using spatio-temporal stationary covariances and intrinsically stationary semivariograms. Equation (7.161) is a valid covariance function (Ma 2003c) -- D.16 Construction of non-stationary spatio-temporal covariance functions using spatio-temporal stationary covariances and intrinsically stationary semivariograms. Equation (7.163) Ma (2003c) -- D.17 Permissibility criteria for quasi-arithmetic means of covariance functions. Proposition 1 (Porcu et al. 2009b) -- Bibliography and further reading -- Index -- Supplemental Images -- Wiley Series in Probability and Statistics -- EULA.

Sommario/riassunto

Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R.   This book includes:   Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples.



2.

Record Nr.

UNINA9910728392703321

Autore

Hockey Thomas

Titolo

America’s First Eclipse Chasers : Stories of Science, Planet Vulcan, Quicksand, and the Railroad Boom / / by Thomas Hockey

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023

ISBN

9783031241246

9783031241239

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (461 pages)

Collana

Popular Astronomy, , 2626-8779

Disciplina

509

523.78

Soggetti

Physics - History

Astronomy

United States - History

Science - History

History of Physics and Astronomy

Astronomy, Observations and Techniques

US History

History of Science

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1. Introduction: “The Rush of this Black Wing of Night” -- Chapter 2. A TRANS-AMERICAN ECLIPSE -- Chapter 3. SOME LIGHT UPON THIS DARK SUBJECT -- Chapter 4. NAVY ASTRONOMERS 2,000 KILOMETERS ASHORE -- Chapter 5. THE VAST BLACK ORB -- Chapter 6. NEW ASTRONOMY IN THE OLD WEST -- Chapter 7. OBSERVING IN STYLE -- Chapter 8. MEETING OF THE GRAYHAIRS -- Chapter 9. Overhanging Monster Wings:” The Philadelphia Photographic Corp -- Chapter 10. SURVEYING A SOLAR ECLIPSE -- Chapter 11. The Canadians: Toques on the Frontier -- Chapter 12. Chasing the Umbra through Time and Space -- Chapter 13. A DARKNESS THAT CAN BE FELT -- Chapter 14. STANDING OF THE EDGE LOOKING UP -- Chapter 15. VULCAN -- Chapter 16. AMERICANS IN TOTALITY -- Chapter 17. IN THE SHADOW OF BENJAMIN BANNEKER and “EVEN THOUGHTLESS WOMEN AND



CHILDREN HUSH . . .” -- Chapter 18. FIRE CLOUD -- Chapter 19. WHAT DID IT ALL MEAN? -- Chapter 20. . . . AND WHAT HAPPENED AFTER THAT?.

Sommario/riassunto

In 2017, over 200 million Americans witnessed the spectacular total eclipse of the Sun, and the 2024 eclipse is expected to draw even larger crowds. In anticipation of this upcoming event, this book takes us back in history over 150 years, telling the story of the nation’s first ever eclipse chasers. Our tale follows the chaotic journeys of scientists and amateur astronomers as they trekked across the western United States to view the rare phenomenon of a total solar eclipse. The fascinating story centers on the expeditions of the 1869 total eclipse, which took place during the turbulent age of the chimerical Planet Vulcan and Civil War Reconstruction. The protagonists—a motley crew featuring astronomical giants like Simon Newcomb and pioneering female astronomers like Maria Mitchell—were met with unanticipated dangers, mission-threatening accidents, and eccentric characters only the West could produce. Theirs is a story of astronomical proportions. Along theway, we will make several stops across the booming US railroad network, traveling from viewing sites as familiar as Des Moines, Iowa, to ones as distant and strange as newly acquired Alaska. From equipment failures and botched preparations to quicksand and apocalyptic ‘comets’, welcome to the wild, western world of solar eclipses.