1.

Record Nr.

UNINA9910806186303321

Autore

Levin A. L. <1944->

Titolo

Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 1994

©1994

ISBN

1-4704-0114-2

Descrizione fisica

1 online resource (166 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; Number 535

Disciplina

515/.55

Soggetti

Orthogonal polynomials

Christoffel-Darboux formula

Convergence

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"September 1994, Volume 111, Number 535 (fourth of 5 numbers)."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

""Table of Contents""; ""Â1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""Â2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for λ[sub(n)]""

""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""Â5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""Â6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""Â7. Lower Bounds for λ[sub(n)]""; ""Theorem 7.1: Lower Bounds for Î?[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1""

""Â8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The



Bounds for Î?[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for Î?[sub(j)]""; ""Lemma 8.6: Estimates for Ï?[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2""

""Lemma 11.5: An Estimate for I[sub(3)]""