|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910806167603321 |
|
|
Titolo |
Nonlinear programming 4 : proceedings of the Nonlinear Programming Symposium 4 / / conducted by the Computer Sciences Department at the University of Wisconsin--Madison, July 14-16, 1980 ; edited by Olvi L. Mangasarian, Robert R. Meyer, Stephen M. Robinson |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, New York ; ; London, [England] : , : Academic Press, , 1981 |
|
©1981 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (560 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index at the end of each chapters. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; Nonlinear Programming 4; Copyright Page; Table of Contents; CONTRIBUTORS; PREFACE; CHAPTER 1. AN UPPER TRIANGULAR MATRIX METHOD FORQUADRATIC PROGRAMMING; ABSTRACT; 1. INTRODUCTION; 2. A COMPARISON OF THREE ACTIVE SET METHODS; 3. THE CALCULATION OF d ANDλ; 4. THE REVISION OF U AND L; 5. DISCUSSION; ACKNOWLEDGMENTS; REFERENCES; CHAPTER 2. SOLVING QUADRATIC PROGRAMSBY AN EXACT PENALTY FUNCTION; ABSTRACT; 1. INTRODUCTION; 2. THE METHOD; 3. BASIC PROPERTIES; 4. FINITE CONVERGENCE; 5. COMPUTATIONAL RESULTS; ACKNOWLEDGMENT; REFERENCES |
CHAPTER 3. QP-BASEDMETHODS FOR LARGE-SCALE NONLINEARLY CONSTRAINED OPTIMIZATIONABSTRACT; 1. INTRODUCTION; 2. LARGE-SCALE LINEARLY CONSTRAINED OPTIMIZATION; 3. QP-BASED METHODS FOR DENSE PROBLEMS; 4. THE USE OF A LINEARLY CONSTRAINED SUBPROBLEM; 5. EXTENSION OF QP-BASED METHODS TO THE LARGE-SCALE CASE; 6. REPRESENTING THE BASIS INVERSE; 7. THE SEARCH DIRECTION FOR THE SUPERBASIC VARIABLES; 8. AN INEQUALITY QPAPPROACH; 9. CONCLUSIONS; REFERENCES; CHAPTER 4. NUMERICAL EXPERIMENTS WITH AN EXACT L1PENALTY FUNCTION METHOD; ABSTRACT; 1. INTRODUCTION; 2. A GLOBALLY CONVERGENT |
|
|
|
|