|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910799497203321 |
|
|
Titolo |
Artificial Intelligence for Edge Computing / / Mudhakar Srivatsa, Tarek Abdelzaher, and Ting He, editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (373 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Artificial intelligence |
Edge computing |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Part 1: Core Problems -- Part 2: Distributed Problems -- Part 3: Cross-Cutting Thoughts -- Contents -- Contributors -- Part I Core Problems -- 1 Neural Network Models for Time Series Data -- 1 Introduction -- 2 DeepSense Framework -- 2.1 Convolutional Layers -- 2.2 Recurrent Layers -- 2.3 Output Layer -- 3 Task-Specific Customization -- 3.1 General Customization Process -- 3.2 Customize Mobile Sensing Tasks -- 4 Evaluation -- 4.1 Data Collection and Datasets -- 4.2 Evaluation Platforms -- 4.3 Algorithms in Comparison -- 4.4 Effectiveness -- 4.4.1 CarTrack -- 4.4.2 HHAR -- 4.4.3 UserID -- 4.5 Latency and Energy -- References -- 2 Self-Supervised Learning from Unlabeled IoT Data -- 1 Introduction -- 1.1 Time-Domain Self-Supervised Contrastive Learning -- 1.2 Frequency-Domain Self-Supervised Contrastive Learning -- 1.3 Semi-Supervised Contrastive Learning -- 1.4 Spectrogram Masked Autoencoder for IoT Applications -- 1.5 A Case Study: Self-Supervised Learning on IoBT-OS -- 1.6 Chapter Organization -- 2 Time-Domain Self-Supervised Contrastive Learning Framework for IoT -- 2.1 Overview -- 2.2 Signal Model -- 2.3 Architecture of SemiAMC -- 2.4 Self-Supervised Contrastive Pre-Training -- 2.4.1 Data Augmentation -- 2.4.2 Encoder -- 2.4.3 Projection Head -- 2.4.4 Contrastive Loss -- 2.5 Evaluation -- 2.5.1 Dataset -- 2.5.2 Experimental Setup -- 2.5.3 Comparison with Supervised Frameworks -- 2.5.4 Performance under Different Amount |
|
|
|
|